⁸⁵Nb ε decay (3.3 s):? 2005Ka39

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 116, 1 (2014) 31-Dec-2013

Parent: ⁸⁵Nb: E=69+y; $J^{\pi}=(1/2^-,3/2^-)$; $T_{1/2}=3.3$ s 9; $Q(\varepsilon)=6894$ 8; $\%\varepsilon+\%\beta^+$ decay<100.0

 85 Nb-J^{π},T_{1/2}: From 85 Nb Adopted Levels.

⁸⁵Nb-Q(ε): From 2012Wa38.

⁸⁵Nb- $\%\varepsilon+\%\beta^+$ decay: 69 γ is interpreted as isomeric transition, but its branching is unknown.

2005Ka39 (also 2005Ka46): Isomer in 85 Nb identified in Ni(32 S,X) reaction at 150-170 MeV. Measured γ , ce, ce(γ) coin, half-life. ISOL technique at IGISOL facility at Jyvaskyla and at ISOLDE/CERN.

85Zr Levels

E(level)
$$J^{\pi \dagger}$$
 $T_{1/2}^{\dagger}$ 0 $(7/2^+)$ $7.86 \text{ min } 4$ 292.2 $(1/2^-)$ $10.9 \text{ s } 3$

† From Adopted Levels.

$$\gamma$$
(85Zr)

⁸⁵Nb ε decay (3.3 s):? 2005Ka39

Decay Scheme

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.