Adopted Levels, Gammas

	Hist	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 116, 1 (2014)	31-Dec-2013

 $Q(\beta^{-}) = -6894 \ 8; \ S(n) = 9825 \ 8; \ S(p) = 6570 \ 8; \ Q(\alpha) = -4071 \ 7$ 2012Wa38 Q(\varepsilon p)=187 7, S(2n)=23406 9, S(2p)=10954 9 (2012Wa38).

 85 Zr produced and identified (1963Bu06) in bombardment of Y and Sr by 230 MeV protons and measuring half-life by β and γ activity. Later decay studies: 1971Yu02, 1971Do01, 1972Tu07, 1976Ia01, 1977Ia01, 1982De36, 1992Bu10, 2005Ka39. Additional information 1.

Many additional high-spin levels and gamma rays are proposed in ${}^{60}\text{Ni}({}^{28}\text{Si},2\text{pn}\gamma)$ reaction (2003WeZY). Due to the tentative nature of the results reported in this secondary reference, these levels and gamma rays are not adopted here. See ${}^{60}Ni({}^{28}Si,2pn\gamma)$ dataset for this information.

Mass measurements: 2006Ka48, 2012Ka13 (Penning-trap method).

⁸⁵Zr Levels

Cross Reference (XREF) Flags

		Α	⁸⁵ Zr IT d	lecay (10.9 s) D 56 Fe(35 Cl,apng)
		В	⁸⁵ Nb <i>ε</i> de	ecay (20.5 s) E ${}^{58}\text{Ni}({}^{31}\text{P},3\text{pn}\gamma),{}^{56}\text{Fe}({}^{32}\text{S},2\text{pn}\gamma)$
		C	^{o3} Nb ε d	ecay (3.3 s):? F 00 Ni(20 Si,2pn γ)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{a}$	XREF	Comments
0.0	(7/2+)	7.86 min 4	ABCDEF	$%ε+%β^+=100$ J ^π : possible allowed β feeding to (5/2 ⁺) and (7/2) ⁺ ; 292γ from (1/2 ⁻), 10.9-s isomer is most likely of multipolarity higher than quadrupole. T _{1/2} : from weighted average of 7.85 min 4 (1972Tu07, β counting) and 7.90 min 10 (1977Ia01). Others: 8.4 min 3 (1982De36), 7.92 min 15 (1976Ia01, same group as 1977Ia01), 6.0 min 10 (1971Yu02), 8.0 min 5 (1971AwZZ), 7.7 min 5 (1971Do01), 6 min (1963Bu06); inclusion of these other values in the averaging procedure does not change the adopted value.
50.12 ^b 4 292.2 3	(9/2 ⁺) (1/2 ⁻)	10.9 s <i>3</i>	BCDEF A C	 J^π: M1+E2 γ to (7/2⁺); β feeding from (9/2⁺) state in ⁸⁵Nb. %ε+%β⁺>0; %IT<100 XREF: C(?). Both ε and IT decay modes have been observed but branching ratio is unknown. From relative photon intensities of 416.5γ in ⁸⁵Y from ε decay and 292.2γ in ⁸⁵Zr from IT decay, it seems IT decay mode is dominant. J^π: from analogy with other N=45 nuclei. T_{1/2}: from timing of 292γ; weighted average of 10.9 s 3 (1976Ia01) and 12 s 2 (2005Ka39).
790.1? [@] 9	(9/2-)		F	
854.0 ^{&} 15	$(11/2^+)$		DEF	
872.0 ^b 15	$(13/2^+)$		DEF	
1043.0? [@] 8	$(13/2^+)$		F	
1176.2? [@] 8	$(11/2^+)$		F	
1328.3? [@] 10	$(11/2^{-})$		F	
1394.2? [@] 8			F	
1494.0 11	$(13/2^+)$		DF	
1758.5 10	$(15/2^+)$		DF	
1884.0 ⁰ 18	$(17/2^+)$		DEF	
1941.0 [∞] 18	$(15/2^+)$		DEF	
2078.2 9 2555.9 11	$(15/2^+)$ $(15/2^-)$		D F D F	

Adopted Levels, Gammas (continued)

⁸⁵Zr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{a}$	XREF	Comments
2625.0 ^d 20	(17/2 ⁻)		DEF	μ =11.1 34 (2007Yu03,2011StZZ) μ : transient magnetic field IMPAD method.
2724.6 10	$(17/2^{-})$		DF	μ. duisient mugnetie neid mitrib medied.
2958.0 ^d 23	(19/2 ⁻)		DEF	μ =10.5 29 (2007Yu03,2011StZZ) μ : transient magnetic field IMPAD method.
3018.0 ^b 20	$(21/2^+)$	0.201 ps +21-28	DEF	Q(transition)=2.61 + 15 - 19 from lifetime (2002Ta11).
3073.0 [#] 20	$(21/2^+)$		DEF	
3387.0 ^d 24	(21/2 ⁻)		DEF	μ =8.9 26 (2007Yu03,2011StZZ) μ : transient magnetic field IMPAD method.
3456.5? [@] 12	$(21/2^{-})$		F	
3516.0 [#] 20	$(23/2^+)$		DEF	
3522.3? [@] 13	$(21/2^{-})$		F	
3838.0 ^d 24	(23/2 ⁻)		DEF	μ =4.9 <i>31</i> (2007Yu03,2011StZZ) μ : transient magnetic field IMPAD method.
3958.0 ^b 21	$(25/2^+)$	0.80 ps +26-28	DEF	Q(transition)=2.01 + 32 - 35 from lifetime (2002Tal1).
3992.7? [@] 13	$(23/2^{-})$		F	
4204.8? [@] 14	$(25/2^+)$		F	
4374.0 ^d 25	$(25/2^{-})$		DEF	
4589.0 [#] 21	$(27/2^+)$		DEF	
4887.0 ^d 25	$(27/2^{-})$		DEF	
4983.2? [@] 16	$(29/2^{-})$		F	
4996.0 ⁶ 22	$(29/2^+)$	0.291 ps 28	DEF	Q(transition)=2.51 13 from lifetime (2002Tal1).
5023.2? [@] 15	$(27/2^{-})$		F	
5530.0? [@] 18	$(29/2^{-})$		F	
5602 ^{<i>d</i>} 3	$(29/2^{-})$		E	
6003.2? [@] 18	$(33/2^+)$		F	
6076 ^{<i>a</i>} 3	$(31/2^{-})$		E	
6239.0 ^b 24	$(33/2^+)$		DEF	
$7482^{\#C}$ 3	$(37/2^+)$		EF	
7527 ^{<i>a</i>} 3	$(35/2^{-})$		E	
7720 ⁰ 3	$(37/2^+)$		E	
8918 ^{#C} 3	$(41/2^+)$		EF	
$9232^{a} 3$	(39/2 ⁻)		E	
9332 ⁰ 3	$(41/2^+)$		E	
10828 ^{#C} 3	$(45/2^+)$		E	
11141 ⁰ 3	$(45/2^+)$		EF	

[†] From least-squares fit to $E\gamma$ data.

[‡] From $\gamma\gamma$ (DCO) and $\gamma(\theta)$ data and band structures in high-spin datasets, unless otherwise noted.

[#] Level related to band 1, fork-type structure.

[@] Level only from 60 Ni(28 Si,2pn γ), treated by the evaluators as tentative.

& Possible member of signature partner of band based on $(9/2^+)$.

^{*a*} Above 292.2 level, values are from line-shape analysis in 58 Ni(31 P,3pn γ), 56 Fe(32 S,2pn γ) (2002Ta11).

^b Band(A): Band based on (9/2⁺). Band crossing at $\hbar\omega$ =0.52 MeV due to alignment of a pair of g_{9/2} protons. Second alignment at $\hbar\omega$ =0.63 MeV due to crossing by a pair of neutrons. Fork-type structure above (19/2⁺) gives rise to doubling of levels at

Adopted Levels, Gammas (continued)

⁸⁵Zr Levels (continued)

 $(21/2^+)$, $(23/2^+)$, $(27/2^+)$, $(37/2^+)$, $(41/2^+)$ and $(45/2^+)$. Band(B): Band based on $(37/2^+)$. Levels related to band based on $(9/2^+)$, fork-type structure.

^d Band(C): Band based on $(17/2^{-})$. Interpreted as magnetic-dipole rotational band in 2007Yu03, based on their g factor

measurements. 2002Ta11 and 1995Ju04 interpreted this band as strongly-coupled band.

 $\gamma(^{85}{\rm Zr})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	δ	$\alpha^{\#}$	Comments
50.12	(9/2+)	50.12 4	100	0.0	(7/2 ⁺)	M1+E2	0.24 6	2.1 4	$\alpha(K)=1.72\ 24;\ \alpha(L)=0.32\ 9;\ \alpha(M)=0.055\ 16;\ \alpha(N)=0.0073\ 19;\ \alpha(O)=0.00031\ 4$ Mult., δ : from $\alpha(K)$ exp in ⁸⁵ Nb ε decay (20.5 s); Measured $K/I = 9\ 0\ 18\ (2005\ Ka39)$ gives
292.2	(1/2 ⁻)	292.2 3	100	0.0	(7/2 ⁺)	[E3]		0.0956	$\delta(E2/M1) < 0.12.$ $\alpha(K) = 0.0801 \ I2; \ \alpha(L) = 0.01289 \ I9; \ \alpha(M) = 0.00227 \ 4; \ \alpha(N) = 0.000303 \ 5; \ \alpha(O) = 1.424 \times 10^{-5} \ 2I \ B(E3)(W,u) < 0.0013$
790.12	$(9/2^{-})$	790 ^{‡@}		0.0	$(7/2^+)$				
854.0	$(11/2^+)$	804 /	100	50.12	$(9/2^+)$				
872.0	$(13/2^+)$	822 1	100	50.12	$(9/2^+)$				
1043.0?	$(13/2^+)$	993 ^{‡@}		50.12	$(9/2^+)$				
1176.2?	$(11/2^+)$	1177 ^{‡@}		0.0	$(7/2^+)$				
1328 32	$(11/2^{-})$	538 ^{‡@}		790.12	$(9/2^{-})$				
1394.22	(11/2)	1394‡@		0.0	$(7/2^+)$				
1494.0	$(13/2^+)$	640		854.0	$(11/2^+)$				
1758 5	$(15/2^+)$	716 ^{‡@}		1043.0?	$(13/2^+)$				
1700.0	(15/2)	886		872.0	$(13/2^+)$ $(13/2^+)$				
1884.0	$(17/2^+)$	126		1758.5	$(15/2^+)$				
		1012 <i>I</i>	100.0 6	872.0	$(13/2^+)$				
1941.0	$(15/2^+)$	447		1494.0	$(13/2^+)$				
		766+ [©]		1176.2?	$(11/2^+)$				
		1069	100 0 22	872.0 854.0	$(13/2^+)$ $(11/2^+)$				
2078.2	$(15/2^{+})$	201 [±] @	100.0 22	1204.22	(11/2)				
2076.2	(13/2)	$750^{\pm 0}$		1229.22	(11/2-)				
		1206		1328.3?	(11/2) $(13/2^+)$				
		1200		854.0	$(13/2^{+})$ $(11/2^{+})$				
2555.9	$(15/2^{-})$	1684		872.0	$(13/2^+)$				
2625.0	$(17/2^{-})$	547		2078.2	$(15/2^+)$				
		684 <i>1</i>	100.0 23	1941.0	$(15/2^+)$				
		741		1884.0	$(17/2^+)$				
27246	$(17/2^{-})$	866		1/58.5	$(15/2^{+})$ $(17/2^{-})$				
2724.0	(17/2)	169		2625.0	(17/2) $(15/2^{-})$				
		646		2078.2	$(15/2^+)$				
		784		1941.0	$(15/2^+)$				
		840		1884.0	$(17/2^+)$				
		966 ^{‡@}		1758.5	$(15/2^+)$				
2958.0	$(19/2^{-})$	234		2724.6	$(17/2^{-})$				
		333 1	100.0 12	2625.0	$(17/2^{-})$				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{85}\text{Zr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult.	Comments
2958.0 3018.0 3073.0 3387.0	$(19/2^{-}) (21/2^{+}) (21/2^{+}) (21/2^{-})$	1074 ^{‡@} 1134 <i>1</i> 1189 <i>1</i> 429 <i>1</i>	100 100 100	1884.0 1884.0 1884.0 2958.0	$(17/2^+) (17/2^+) (17/2^+) (19/2^-)$	[E2]	B(E2)(W.u.)=67 + 11 - 7
2456 59	(21/2=)	831 ^{‡@}		2555.9	$(15/2^{-})$		
3456.5? 3516.0	(21/2) $(23/2^+)$	498+°° 443 <i>1</i> 498 <i>1</i>	100.0 <i>15</i> 41.1 <i>10</i>	2958.0 3073.0 3018.0	(19/2) $(21/2^+)$ $(21/2^+)$		
3522.3?	$(21/2^{-})$	449 ^{‡@}		3073.0	$(21/2^+)$		
3838.0	(23/2 ⁻)	382 ^{‡@} 451 <i>1</i> 880 <i>1</i>	100.0 <i>11</i> 27.2 <i>11</i>	3456.5? 3387.0 2958.0	(21/2 ⁻) (21/2 ⁻) (19/2 ⁻)		
3958.0	(25/2+)	437 ^{‡@} 442 <i>1</i> 940 <i>1</i>	100.0 <i>16</i> 78.3 <i>16</i>	3522.3? 3516.0 3018.0	$(21/2^{-})$ $(23/2^{+})$ $(21/2^{+})$	[E2]	B(E2)(W.u.) = 19 + 10 - 5
3992.7?	$(23/2^{-})$	606 ^{‡@}		3387.0	$(21/2^{-})$		
4204.8?	$(25/2^+)$	688 ^{‡@}		3516.0	$(23/2^+)$		
4374.0	$(25/2^{-})$	382 ^{‡@}		3992.7?	$(23/2^{-})$		
107.110	()	536 <i>1</i> 987 <i>1</i>	100.0 <i>22</i> 57.1 <i>22</i>	3838.0 3387.0	$(23/2^{-})$ $(21/2^{-})$		
4589.0	$(27/2^+)$	631 <i>1</i> 1073 <i>1</i>	100.0 <i>18</i> 63 3 <i>18</i>	3958.0 3516.0	$(25/2^+)$ $(23/2^+)$		
4887.0	(27/2 ⁻)	513 <i>I</i> 1049 <i>I</i>	100.0 <i>14</i> 54.8 <i>14</i>	4374.0 3838.0	$(25/2^{-})$ $(25/2^{-})$ $(23/2^{-})$		
4983.2?	$(29/2^{-})$	1024 ^{‡@}		3958.0	$(25/2^+)$		
4996.0	$(29/2^+)$	407 1	82.0 16	4589.0	$(27/2^+)$	(E2)	$D(E2)(W_{12}) - 40.4$
5023.2?	(27/2-)	649 ^{‡@}	100.0 10	3938.0 4374.0	$(25/2^{-})$ $(25/2^{-})$	[E2]	B(E2)(W.u.)=40 4
5530.0?	$(29/2^{-})$	643 ^{‡@}		4887.0	$(27/2^{-})$		
5602	(29/2 ⁻)	715 <i>I</i> 1228 <i>I</i>	74 5 100 8	4887.0 4374.0	(27/2 ⁻) (25/2 ⁻)		
6003.2?	$(33/2^+)$	1006 ^{‡@}		4996.0	$(29/2^+)$		
6076	$(31/2^{-})$	474 1	23.5 20	5602	$(29/2^{-})$		
6220.0	$(22/2^{+})$	1189 1	100.0 20	4887.0	(21/2)		
0239.0	(33/2)	1245 1	100	4990.0 6230.0	(29/2) $(33/2^+)$		
7402	(37/2) $(35/2^{-})$	1245 1	100	0239.0 6076	(33/2) $(31/2^{-})$		
7720	(35/2) $(37/2^+)$	1431 1	100	6230 0	(31/2) $(33/2^+)$		
8918	(37/2) $(41/2^+)$	1436 1	100	0239.0 7482	$(37/2^+)$		
9232	$(39/2^{-})$	1705 1	100	7527	$(35/2^{-})$		
9332	$(41/2^+)$	1612.1	100	7720	$(37/2^+)$		
10828	$(45/2^+)$	1910 /	100	8918	$(41/2^+)$		
11141	$(45/2^+)$	1809 1	100	9332	$(41/2^+)$		

[†] Available only from ⁵⁸Ni(³¹P,3pn γ),⁵⁶Fe(³²S,2pn γ). [‡] Gamma only from ⁶⁰Ni(²⁸Si,2pn γ), treated by the evaluators as tentative.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{85}_{40} Zr_{45}$

 $^{85}_{40}{
m Zr}_{45}$

Adopted Levels, Gammas

 $^{85}_{40}{
m Zr}_{45}$