⁶⁰Ni(²⁸Si,2pnγ) 2003Wa36

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 116, 1 (2014)	31-Dec-2013				

2003Wa36: $E(^{28}Si)=102$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO), excitation functions (from 95 to 120 MeV beam energy) using an array of ten BGO Compton-suppressed Ge detectors. Complete data details of this work are not available, only $E\gamma$ and level scheme are given.

2007Yu03: E=98 MeV, measured g factors by transient-magnetic field ion implantation perturbed angular distribution

(TMF-IMPAD) technique. 2007Yu03 is a conference paper and full details of this study are not available. The evaluators have read g factors from authors' figure 3 giving measured g factors versus spin.

Additional information 1.

Other: 1985OnZY: E=85-100 MeV.

85Zr Levels

$E(level)^{\dagger}$ $J^{\pi \ddagger}$ Comments	
0 7/2+	
50.12^{d} 4 9/2 ⁺	
790 1 & 9 9/2-	
854.4 7 11/2 ⁺	
872.4^{d} 7 $13/2^{+}$	
$1043.0^{\#} 8 \qquad 13/2^+$	
$1176.2^{\#}.8$ $11/2^{+}$	
$1328 3^{\#} 10 11/2^{-}$	
$1320.5 + 10^{-11} + 11/2$	
$1374.2 \ 0 \ 13/2^+$	
$1758.9 8 15/2^+$	
$1884.6^{d} 8 17/2^{+}$	
1941.5 7 15/2+	
2078.4 7 15/2+	
2556.2 9 15/2-	
2625.3^{e} 7 $17/2^{-}$ g=+1.3 4 (2007Yu03)	
2/25.0 / $1//22058 2^{\ell} 0 10/2 -1112(2007X_{2}02)$	
2938.5° 9 $19/2$ g=+1.1 5 (200/ 1005)	
$3018.7^{\circ} 12 = 21/2^{\circ}$ $2072.5.12 = 21/2^{\circ}$	
3073.512 $21/233871^{e} 10 21/2^{-1} g=+0.85.25 (2007Yu03)$	
$34560^{\#} 12$ (21/2 ⁻)	
3516512 $23/2^+$	
$35223^{\#}13$ (21/2 ⁻)	
3838.0^{ae} 11 $23/2^{-}$ g=+0.43 27 (2007Yu03)	
3959.2^d 13 $25/2^+$	
3992.7 13 (23/2 ⁻)	
$4204.8^{\#}$ 14 $25/2^{+}$	
$4267.8?^{\#@}$ 15 (25/2 ⁻)	
4374.2^{e} 12 $25/2^{-}$	
4589.2 13 27/2+	
4887.0 15 27/2-	
$4983.2^{\#}$ 16 (29/2 ⁻)	
4997.2^{a} 14 $29/2^{+}$	
$5023.2^{\#e}$ 15 (27/2 ⁻)	
$5522.2^{\#@}$ 17 (31/2 ⁺)	

50 Ni(28 Si,2pn γ) 2003Wa36 (continued	ontinued)	2003Wa36	Ni(²⁸ Si,2pnγ)	⁵⁰ Ni(²
---	-----------	----------	----------------------------	--------------------------------

⁸⁵Zr Levels (continued)

E(level) [†]	J ^π ‡	E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}
5530.0 [#] 18	(29/2 ⁻)	6240.2 ^d 18	33/2+	10542.2 ^{#bd} 25	$(45/2^+)$
5653.2 ^{#@} 15	$(29/2^{-})$	7485.2 ^d 20	37/2+	12414.2 ^{#@cd} 27	$(49/2^+)$
6003.2 [#] 18	$33/2^{+}$	8920.2 ^d 23	$(41/2^+)$		

[†] From least-squares fit to $E\gamma$ data.

[‡] From $\gamma\gamma$ (DCO) data and band structures in 2003Wa36.

[#] Level is proposed by 2003Wa36 only. This level and associated γ rays are treated as tentative in the Adopted Levels, Gammas, since details of this work are lacking and further work is needed to confirm the level and gammas from it.

[@] Level is not included in Adopted Levels due to tentative assignment of γ ray from this level in 2003Wa36.

[&] Level proposed only in 2003Wa36, not given in Adopted Levels since there is some uncertainty about the placement of 790 γ . This γ is shown to feed the 50-keV level in figure 1 of 2003Wa36, but 750-538-790 cascade from 2078-keV level requires 790 γ to be a g.s. transition.

^{*a*} 2007Yu03 state that g factor of 23/2⁻ state was not corrected for the precession transfer since transitions from weakly populated higher levels were not seen.

^b 10555 In level-scheme figure 1 of 2003Wa36 is a misprint if $E\gamma$ =1622 is correct. This level is not included In Adopted Levels.

^c 12427 In level-scheme figure 1 of 2003Wa36 is a misprint if $E\gamma$ =1872 is correct.

^d Band(A): Yrast band, $vg_{9/2}$ orbital. First band crossing at $21/2^+$ and $\hbar\omega=0.49$ MeV due to pair of $g_{9/2}$ protons, second band crossing at $33/2^+$ and $\hbar\omega=0.63$ MeV due to pair of $g_{9/2}$ neutrons. Thus $21/2^+$ state would have a 3-quasiparticle $vg_{9/2} \otimes \pi g_{9/2}^2$ configuration, and $33/2^+$ state, a 5-quasiparticle $vg_{9/2}^3 \otimes \pi g_{9/2}^2$ configuration.

^{*e*} Band(B): Possible Magnetic dipole rotational band. Proposed configuration= $\pi g_{9/2}^2 \otimes v f_{7/2}$ (2007Yu03) from their g factor measurements and interpretation as magnetic-rotational structure. In 2002Tall and 1995Ju04, however, this band is interpreted as strongly-coupled structure.

F	F.(level)	īπ	E.	īπ	F	F.(level)	īπ	E.	īπ
Ľγ	$E_l(level)$	^J i	\mathbf{L}_{f}	J <i>f</i>	Ľγ	$L_l(level)$	J _i	Lf	J <i>f</i>
50.12 ^{<i>a</i>} 4	50.12	9/2+	0	7/2+	536	4374.2	$25/2^{-}$	3838.0	$23/2^{-}$
100	2725.0	$17/2^{-}$	2625.3	17/2-	538	1328.3	$11/2^{-}$	790.1	9/2-
126	1884.6	$17/2^{+}$	1758.9	$15/2^{+}$	547 [#]	2625.3	$17/2^{-}$	2078.4	$15/2^{+}$
169	2725.0	$17/2^{-}$	2556.2	15/2-	606	3992.7	$(23/2^{-})$	3387.1	$21/2^{-}$
233 [@]	2958.3	19/2-	2725.0	$17/2^{-}$	630 [@]	4589.2	$27/2^+$	3959.2	$25/2^+$
333 [#]	2958.3	19/2-	2625.3	$17/2^{-}$	640 [@]	1494.4	$13/2^{+}$	854.4	$11/2^+$
382 [‡]	3838.0	$23/2^{-}$	3456.2	$(21/2^{-})$	643	5530.0	$(29/2^{-})$	4887.0	$27/2^{-}$
382 [‡]	4374.2	$25/2^{-}$	3992.7	$(23/2^{-})$	646 [@]	2725.0	$17/2^{-}$	2078.4	$15/2^{+}$
384 [‡]	4589.2	$27/2^+$	4204.8	25/2+	649	5023.2	$(27/2^{-})$	4374.2	$25/2^{-}$
408 [@]	4997.2	29/2+	4589.2	27/2+	684 [‡]	2078.4	$15/2^{+}$	1394.2	
429 [#]	3387.1	$21/2^{-}$	2958.3	19/2-	684 [#]	2625.3	$17/2^{-}$	1941.5	$15/2^{+}$
437 [‡]	3959.2	$25/2^+$	3522.3	$(21/2^{-})$	688	4204.8	$25/2^+$	3516.5	$23/2^+$
443 [@]	3516.5	$23/2^+$	3073.5	$21/2^+$	716 [‡]	1758.9	$15/2^{+}$	1043.0	$13/2^{+}$
443 [@]	3959.2	$25/2^+$	3516.5	23/2+	741 [@]	2625.3	$17/2^{-}$	1884.6	$17/2^{+}$
447 [@]	1941.5	$15/2^+$	1494.4	13/2+	750 [‡]	2078.4	$15/2^+$	1328.3	$11/2^{-}$
449	3522.3	$(21/2^{-})$	3073.5	21/2+	766 [‡]	1941.5	$15/2^+$	1176.2	$11/2^{+}$
451 [@]	3838.0	$23/2^{-}$	3387.1	$21/2^{-}$	784	2725.0	$17/2^{-}$	1941.5	$15/2^{+}$
498	3456.2	$(21/2^{-})$	2958.3	19/2-	790 ^{†@}	790.1	9/2-	0	7/2+
498 [@]	3516.5	$23/2^+$	3018.7	$21/2^+$	804 [#]	854.4	$11/2^+$	50.12	9/2+

$\gamma(^{85}\text{Zr})$

Continued on next page (footnotes at end of table)

	$\frac{{}^{60}\mathrm{Ni}({}^{28}\mathrm{Si},2\mathrm{pn}\gamma)}{2003\mathrm{Wa36}} \text{ (continued)}$								
				_	$\gamma(^{8}$	³⁵ Zr) (contin	ued)		
Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
822 [#]	872.4	13/2+	50.12	9/2+	1074 [‡]	2958.3	19/2-	1884.6	17/2+
831 [‡]	3387.1	$21/2^{-}$	2556.2	$15/2^{-}$	1087 [@]	1941.5	$15/2^{+}$	854.4	$11/2^{+}$
840	2725.0	$17/2^{-}$	1884.6	$17/2^{+}$	1134 [#]	3018.7	$21/2^{+}$	1884.6	17/2+
866 [@]	2625.3	$17/2^{-}$	1758.9	$15/2^{+}$	1177	1176.2	$11/2^+$	0	$7/2^{+}$
879	3838.0	$23/2^{-}$	2958.3	19/2-	1189 [#]	3073.5	$21/2^{+}$	1884.6	$17/2^{+}$
886 [@]	1758.9	$15/2^+$	872.4	$13/2^{+}$	1206	2078.4	$15/2^{+}$	872.4	$13/2^{+}$
933 &b	5522.2	$(31/2^+)$	4589.2	$27/2^+$	1224	2078.4	$15/2^{+}$	854.4	$11/2^{+}$
940 ^{‡@}	3959.2	$25/2^+$	3018.7	$21/2^+$	1243 [@]	6240.2	$33/2^+$	4997.2	$29/2^+$
966 [‡]	2725.0	$17/2^{-}$	1758.9	$15/2^{+}$	1245	7485.2	$37/2^+$	6240.2	33/2+
987	4374.2	$25/2^{-}$	3387.1	$21/2^{-}$	1249 ^{&b}	4267.8?	$(25/2^{-})$	3018.7	$21/2^+$
993	1043.0	$13/2^{+}$	50.12	9/2+	1279 ^{&b}	5653.2	$(29/2^{-})$	4374.2	$25/2^{-}$
1006	6003.2	$33/2^+$	4997.2	$29/2^+$	1329 ^{†&b}	1328.3	$11/2^{-}$	0	$7/2^{+}$
1012 [#] 1024	1884.6 4983.2	17/2 ⁺ (29/2 ⁻)	872.4 3959.2	13/2 ⁺ 25/2 ⁺	1394 [†] 1435	1394.2 8920.2	$(41/2^+)$	0 7485.2	7/2 ⁺ 37/2 ⁺
1038 [@] 1049	4997.2 4887.0	29/2 ⁺ 27/2 ⁻	3959.2 3838.0	25/2 ⁺ 23/2 ⁻	1622 ^{&} 1684	10542.2 2556.2	(45/2 ⁺) 15/2 ⁻	8920.2 872.4	(41/2 ⁺) 13/2 ⁺
1069 [@]	1941.5	$15/2^{+}$	872.4	$13/2^{+}$	1872 ^{&b}	12414.2	$(49/2^+)$	10542.2	$(45/2^+)$
1073 [@]	4589.2	$27/2^+$	3516.5	$23/2^{+}$					

[†] Placements of 684 and 750 γ rays from 2078 level can be correct only if 790 γ , 1329 γ and 1394 γ feed the g.s., not the 50-keV level as shown in figure 1 of 2003Wa36.

[‡] The γ is from 2003Wa36 only, it is treated as tentative in the Adopted Gammas. From the thickness of the arrows shown in the level scheme figure 1 of 2003Wa36, it seems a weak γ ray.

[#] Strong γ ray.

[@] Medium-intensity γ ray.

& This γ is not included in Adopted Gammas due to its tentative assignment in 2003Wa36.

^{*a*} From Adopted Gammas for ⁸⁵Zr.

^b Placement of transition in the level scheme is uncertain.

 $^{85}_{40}{
m Zr}_{45}$

⁶⁰Ni(²⁸Si,2pnγ) 2003Wa36

Level Scheme (continued)

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{85}_{40}{
m Zr}_{45}$

 $^{85}_{40}{
m Zr}_{45}$