Adopted Levels:unobserved

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 116, 1 (2014) 31-Dec-2013

 $S(n)=15020 CA; S(p)=-1180 SY; Q(\alpha)=-1230 SY 2012Wa38,1997Mo25$

S(n) from 1997Mo25; S(p) and Q(α) from 2012Wa38. Other: S(p)=-960 640 (1999Ja02).

Estimated uncertainties (2012Wa38): $\Delta S(p) = \Delta Q(\alpha) = 570$.

 $Q(\varepsilon p) = 7700 \ 500, \ S(2p) = 2200 \ 500 \ (syst, 2012Wa38). \ S(2n) = 29390 \ (theory, 1997Mo25).$

1999Ja02: Search for ⁸⁵Tc nuclide in fragmentation of ⁹²Mo³⁷⁺ beam at 60 MeV/nucleon with a Nickel target, LISE-3 spectrometer at GANIL, E-ΔE detector system, time-of-flight method.

Independent work at GSI by Wefers et al., GSI annual report 2001-1, page 10, also 2007WeZX preprint: fragmentation of ¹¹²Sn beam at 1 GeV/nucleon with a beryllium target, FRS spectrometer at GSI facility.

No events were detected by 1999Ja02 or in the work at GSI which could be assigned to ⁸⁵Tc, which implies that ⁸⁵Tc is proton unbound.

Additional information 1.

⁸⁵Tc, most likely, is unbound towards proton emission.

%p=?

85Tc Levels

 $\frac{\text{E(level)}}{0?} \quad \frac{\text{T}_{1/2}}{<100 \text{ ns}}$

Comments

 $T_{1/2}$: ⁸⁵Tc not detected, only a limiting half-life is estimated by 1999Ja02 from measured upper limits on cross sections. Other: <110 ns (Wefers et al., GSI 2001-1, 2000 annual report, page 10). Theoretical β decay $T_{1/2}$ =70 ms (1997Mo25) suggests negligible decay through this mode.

From structure calculations, 1999Ja02 predict ground state as $\pi 5/2$ [422] oblate state. Others: $3/2^+$ (predicted, 1997Mo25), $1/2^-$ (systematics,2012Au07).