⁸⁵Y ε decay (2.68 h) 1976Li02,1975Ba49

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 116, 1 (2014)	31-Dec-2013						

Parent: ⁸⁵Y: E=0.0; $J^{\pi}=(1/2)^{-}$; $T_{1/2}=2.68$ h 5; $Q(\varepsilon)=3261$ 19; $\%\varepsilon+\%\beta^{+}$ decay=100.0

⁸⁵Y-J^{π},T_{1/2}: From ⁸⁵Y Adopted Levels.

⁸⁵Y-Q(ε): From 2012Wa38.

1976Li02: measured γ singles and coincidences.

1975Ba49: source produced by 84 Sr(p, γ).

Others: 1971Ar17, 1966Ho04, 1963Do07, 1962Pa02.

The decay scheme seems incomplete since the highest level populated is at 1560 keV whereas Q value is 3260 keV; γ transitions from possible levels higher than 1560 keV may have missed detection.

⁸⁵Sr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	9/2+	64.849 d 7	
231.65 7	$7/2^{+}$		
238.77 18	$1/2^{-}$	67.63 min 4	$\%$ IT=86.6 4; $\% \varepsilon + \% \beta^+ = 13.4$ 4
743.20 22	3/2-		
936.8 <i>3</i>	5/2-		
1152.67 22	3/2-		
1516.9 5	(1/2, 3/2)		
1559.4 5	(1/2,3/2)		

 † From least-squares fit to Ey data.

[‡] From Adopted Levels.

 ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	Ie‡	$\log ft^{\dagger}$	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(1702 19)	1559.4	0.041 12	0.33 9	6.9 1	0.37 10	av E β =298.3 82; ε K=0.776 9; ε L=0.0916 11; ε M+=0.02000 23
(1744 <i>19</i>)	1516.9	0.032 6	0.21 3	7.1 <i>1</i>	0.24 4	av $E\beta$ =316.6 83; ε K=0.756 10; ε L=0.0892 12; ε M+=0.01947 25
(2108 19)	1152.67	3.8 4	6.2 6	5.82 5	10.0 10	av $E\beta$ =475.9 84; ε E=0.538 12; ε L=0.0633 15; ε M+=0.0138 3
(2518 19)	743.20	38 <i>3</i>	21 2	5.43 5	59 5	av E β =658.8 86; ε K=0.317 9; ε L=0.0372 10; ε M+=0.00810 22
(3022 19)	238.77	24 6	5.6 13	6.2 1	30 7	av $E\beta$ =888.9 88; ε K=0.162 4; ε L=0.0190 5; ε M+=0.00414 11
						I($\varepsilon + \beta^+$): deduced from intensity balance at 238.77-keV level with the consideration of $\%\varepsilon + \%\beta^+ = 13.4$ from this

isomer.

[†] All $\varepsilon + \beta^+$ feedings should be considered as upper limits and corresponding log *ft* values as lower limits since the decay scheme is not considered complete in view of possible unobserved γ transitions from levels above 1.6 MeV.

[‡] Absolute intensity per 100 decays.

$\gamma(^{85}\mathrm{Sr})$

Iv normalization: From $I_{\gamma}(504\gamma)/I_{\gamma}(231\gamma)=0.71$ 5 and $\%I_{\gamma}(231\gamma)=83.9\%$ 4 (see ⁸⁵Sr IT decay dataset).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.#	δ#	α ^{&}	$I_{(\gamma+ce)}^{@}$	Comments
(7.12 25)		238.77	1/2-	231.65	7/2+	[E3]		2.02×10 ⁷ 12	143 10	α (L)=1.66×10 ⁷ 10; α (M)=3.31×10 ⁶ 19; α (N)=3.17×10 ⁵ 18; α (O)=63 4 E _{γ} : from level-energy difference. $I_{(\alpha+c\alpha)}$: Ti(7 γ)=Ti(231 γ)=143 10.
215.9 4	0.32 3	1152.67	$3/2^{-}$	936.8	$5/2^{-}$					
231.65 7	140 10	231.65	7/2+	0.0	9/2+	M1+E2	-0.45 6	0.0224 12		$\alpha(K)=0.0196 \ 11; \ \alpha(L)=0.00228 \ 14; \ \alpha(M)=0.000383 \ 23; \ \alpha(N)=4.7\times10^{-5} \ 3$
										corrected for time dependence.
238.77 24	0.56 10	238.77	1/2-	0.0	9/2+	M4		1.95		α (K)=1.61 3; α (L)=0.288 5; α (M)=0.0500 9; α (N)=0.00599 10; α (O)=0.000302 5
409.5 3	1.40 10	1152.67	3/2-	743.20	$3/2^{-}$					
504.44 14	100	743.20	3/2-	238.77	$1/2^{-}$					
698.00 <i>20</i>	0.3	936.8	5/2-	238.77	$1/2^{-}$					I_{γ} : deduced from level scheme.
913.89 14	15.0 8	1152.67	3/2-	238.77	$1/2^{-}$					
1278.1 4	0.40 4	1516.9	(1/2, 3/2)	238.77	$1/2^{-}$					
1320.6 4	0.61 15	1559.4	(1/2, 3/2)	238.77	$1/2^{-}$					

 \mathbf{P}

[†] Weighted average of measurements by 1976Li02, 1975Ba49, and 1970HoZU (as given in earlier Nuclear Data Sheets of 1971Ho42).

[‡] From 1976Li02.
[#] From Adopted Gammas unless indicated otherwise.
[@] For absolute intensity per 100 decays, multiply by 0.60 5.
[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁸⁵Y ε decay (2.68 h) 1976Li02,1975Ba49

 $^{85}_{38}{
m Sr}_{47}$