85Nb IT decay (3.3 s) 2005Ka39

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh and Jun Chen NDS 116, 1 (2014) 31-Dec-2013

Parent: 85 Nb: E=69+y; J^{π} =(1/2⁻,3/2⁻); $T_{1/2}$ =3.3 s 9; %IT decay<100.0

 85 Nb-J^{π},T_{1/2}: From 85 Nb Adopted Levels.

 85 Nb-%IT decay: 69γ is interpreted as isomeric transition, but its branching ratio is unknown.

2005Ka39 (also 2005Ka46): Isomer in 85 Nb identified in Ni(32 S,X) reaction at 150-170 MeV. Measured γ , ce, ce(γ) coin, half-life. ISOL technique at IGISOL facility at Jyvaskyla and at ISOLDE/CERN.

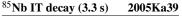
⁸⁵Nb Levels

E(level) J^{π} $T_{1/2}$ Comments

0 $(9/2^+)$ 20.5 s 12 $J^{\pi}, T_{1/2}$: from Adopted Levels.

0+y?

69+y? $(1/2^-, 3/2^-)$ 3.3 s 9

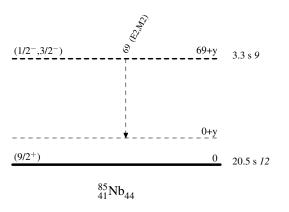

γ (85Nb)

 $\frac{E_{\gamma}}{69^{\dagger}}$ $\frac{E_{i}(\text{level})}{69+\text{y}?}$ $\frac{J_{i}^{\circ}}{(1/2^{-},3/2^{-})}$ $\frac{E_{f}}{0+\text{y}?}$ $\frac{\text{Mult.}}{(\text{E2,M2})}$

Mult.: from $\alpha(K)$ exp>2.6, K/L=4.1 *13* (2005Ka39), ce measurements. For E2, $\alpha(K)$ =3.2, K/L=4.5 4. For M2, $\alpha(K)$ =6.3, K/L=6.1 6. The theoretical K/L ratio tends to support E2.

Comments

[†] Placement of transition in the level scheme is uncertain.



Legend

Decay Scheme

%IT<100.0

---- γ Decay (Uncertain)

