208 Pb(18 O,X γ) E=85 MeV 2006As07

		History	
Туре	Author	Citation	Literature Cutoff Date
Modified	Balraj Singh	ENSDF	08-May-2015

2006As07: E=85 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ with the Euroball IV array consisting of 15 Cluster Ge detectors placed in the backward hemisphere, 26 Clover Ge detectors located around 90° and 30 tapered single-crystal Ge detectors located at forward angles.

Additional information 1.

⁸⁵Br Levels

E(level) ^{†‡}	J π #	E(level) ^{†‡}	J ^{π#}	E(level) ^{†‡}	$J^{\pi \#}$	E(level) ^{†‡}	J ^{π#}
0.0@	3/2-	2165.22 [@] 23	11/2-	3707.8 ^{&} 4	15/2(-)	4657.2 4	$(17/2^+)$
344.52 [@] 10	5/2-	2991.0 4	$11/2^{(+)}$	3855.6 4	$(15/2^+)$	4678.2 <i>4</i>	$(17/2^+)$
1426.74 [@] 17	$7/2^{-}$	3325.7 ^{&} 4	$13/2^{(-)}$	3955.2 5	(15/2)	4906.9 <i>4</i>	$(19/2^+)$
1571.86 [@] 19 1858.75 24	$9/2^{-}$ $9/2^{+}$	3421.1 <i>4</i> 3684.8 <i>4</i>	$(13/2^+)$ $(13/2^+)$	4341.4 ^{&} 5 4439.7 4	$(17/2^{-})$ $(17/2^{+})$	5113.7 ^{&} 7 5389.9 <i>11</i>	$(19/2^{-})$ (21/2)

[†] From least-squares fit to $E\gamma's$.

[‡] Search for isomers having $T_{1/2}$ within the range 10-300 ns, based upon time distributions between emissions of γ -rays, conducted by 2006As07 yielded no evidence for isomerism in ⁸⁵Br, as suggested in 2005Fo05.

[#] Spin-parity assignments to excited states made by 2006As07 based upon experimentally-determined multipole orders of de-exciting transitions and the lack or the existence of several linking transitions between excited states.

[@] Band(A): γ cascade based on g.s.

& Band(B): Band based on $13/2^{(-)}$.

$\gamma(^{85}Br)$

	=======================================		========
$J_1 - J_2 - J_3$		R(22°)	$R(46^{\circ})$
6-4-2	1.13	1.06	
5-4-3	1.06	1.03	
5-4-2	0.92	0.96	

 $R(\theta)$ =coincidence rates between γ -rays as a function of their relative angle of detection, divided by the ones obtained around 75°.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
217.0 3	2.9 12	4657.2	$(17/2^+)$	4439.7	$(17/2^+)$		
228.7 3	1.6 8	4906.9	$(19/2^+)$	4678.2	$(17/2^+)$		
249.5 2	5.0 15	4906.9	$(19/2^+)$	4657.2	$(17/2^+)$		
344.5 1	100	344.52	$5/2^{-}$	0.0	$3/2^{-}$	D	
382.1 2	13 <i>3</i>	3707.8	$15/2^{(-)}$	3325.7	$13/2^{(-)}$	D	$R_{382\gamma-1161\gamma}(22^{\circ})=1.08\ 6;\ R_{382\gamma-1161\gamma}(46^{\circ})=1.05\ 4.$
432.0 2	39 4	1858.75	9/2+	1426.74	7/2-	D	$R_{432\nu-1427\nu}(22^{\circ})=0.93~6; R_{432\nu-1427\nu}(46^{\circ})=0.92~4.$
434.3 <i>3</i>	3.3 13	3855.6	$(15/2^+)$	3421.1	$(13/2^+)$		
468.0 4	1.1 5	4906.9	$(19/2^+)$	4439.7	$(17/2^+)$		
483 1		5389.9	(21/2)	4906.9	$(19/2^+)$		I_{γ} : weak γ ray.

.

				208 Pb(18 O,X γ) E=85 MeV		5 MeV	2006As07 (continued)	
γ ⁽⁸⁵ Br) (continued)								
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	Comments	
583.9 <i>3</i>	4.2 13	4439.7	$(17/2^+)$	3855.6	$(15/2^+)$			
593.3 2	31 3	2165.22	11/2-	1571.86	9/2-	D	$R_{593\gamma-1227\gamma}(22^{\circ})=0.95\ 5;\ R_{593\gamma-1227\gamma}(46^{\circ})=0.97\ 4.$ 15/2 ⁻ for final level given in table 3 of 2006As07 is a misprint.	
633.6 <i>3</i>	8.0 24	4341.4	$(17/2^{-})$	3707.8	$15/2^{(-)}$			
702 1		4657.2	$(17/2^+)$	3955.2	(15/2)		I_{γ} : weak γ ray.	
738.6 <i>3</i>	9 <i>3</i>	2165.22	$11/2^{-}$	1426.74	7/2-			
772.2 5	21	5113.7	$(19/2^{-})$	4341.4	$(17/2^{-})$			
864.6 4	9 <i>3</i>	3855.6	$(15/2^+)$	2991.0	$11/2^{(+)}$			
949.3 5	31	4657.2	$(17/2^+)$	3707.8	$15/2^{(-)}$			
972.5 5	2.5 10	4657.2	$(17/2^+)$	3684.8	$(13/2^+)$			
993.2 5	1.3 6	4678.2	$(17/2^+)$	3684.8	$(13/2^+)$			
1018.8 <i>3</i>	2.2 [‡] 9	4439.7	$(17/2^+)$	3421.1	$(13/2^+)$			
1082.1 4	16 [‡] 3	1426.74	$7/2^{-}$	344.52	$5/2^{-}$			
1132.2 4	5.0 15	2991.0	$11/2^{(+)}$	1858.75	9/2+			
1160.5 3	22 3	3325.7	$13/2^{(-)}$	2165.22	$11/2^{-}$	D	$R_{1161\nu-593\nu}(22^{\circ})=1.07~6; R_{1161\nu-593\nu}(46^{\circ})=1.06~4.$	
1227.3 2	60 6	1571.86	$9/2^{-}$	344.52	$5/2^{-}$	Q	$R_{1227\nu-345\nu}(22^{\circ})=0.94$ 5; $R_{1227\nu-345\nu}(46^{\circ})=0.98$ 3.	
1257.2 5	1.2 6	4678.2	$(17/2^+)$	3421.1	$(13/2^+)$	-		
1419.3 5	3 1	2991.0	$11/2^{(+)}$	1571.86	9/2-			
1426.8 2	42 4	1426.74	7/2-	0.0	3/2-	Q		
1514 [#] 1	<1	1858.75	$9/2^{+}$	344.52	$5/2^{-}$			
1562.3 3	10 3	3421.1	$(13/2^+)$	1858.75	9/2 ⁺			
1790.0 5	2 1	3955.2	(15/2)	2165.22	$11/2^{-}$			
1826.0 5	52	3684.8	$(13/2^+)$	1858.75	$9/2^{+}$			

[†] Coincidence rates between γ -rays as a function of their relative angle of detection (R(θ)), divided by the ones obtained around 75°, are provided in comments on the relevant transitions. Theoretical values of R(θ) at $\theta = 22^{\circ}$ and 46° for several combinations of spin sequences are given, respectively, as follows:

[±] I γ =2.2 9 for 1082.1 γ and 16 3 for 1018.8 γ listed in table 3 of 2006As07 seem reversed as judged from authors' figure 5.

[#] Placement of transition in the level scheme is uncertain.

(21/2)

 $(19/2^{-})$

 $(19/2^+)$

 $\frac{(17/2^+)}{(17/2^+)}$

 $\frac{(17/2^+)}{(17/2^-)}$

(15/2)

 $(15/2^+)$

 $\frac{15/2^{(-)}}{(13/2^+)}$

 $(13/2^+)$

13/2(-)

 $11/2^{(+)}$

11/2-

9/2+

9/2-

7/2-

5/2-

3/2-

1858.75

1571.86

1426.74

344.52

0.0

 $^{85}_{35}{
m Br}_{50}$

3

²⁰⁸Pb(¹⁸O,Xγ) E=85 MeV 2006As07

