⁸⁴Nb ε decay **2003Do01**

	History						
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	T. Kibedi and J. Timar	NDS 110,2815 (2009)	30-Sep-2009				

Parent: ⁸⁴Nb: E=0; $J^{\pi}=(1^+,2^+,3^+)$; $T_{1/2}=9.8 \text{ s } 9$; $Q(\varepsilon)=10200 \text{ SY}$; $\%\varepsilon+\%\beta^+$ decay=100.0

⁸⁴Nb-Q(ε): 10200 300 (syst,2009AuZZ). Other: 9610 360 (syst,2003Au03). Q(ε)(⁸⁴Nb)=7.2 MeV 4 from $\beta\gamma$ coin experiment (1996Sh27) is lower by at least 2.3 MeV from the systematic value in mass evaluations (2009AuZZ,2003Au03).

 84 Nb-J^{π},T_{1/2}: from ⁸⁴Nb Adopted Levels.

2003Do01: ⁵⁸Ni(³²S,np $\alpha\gamma$) at 94 MeV, FMA recoil separator. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ and $\beta\gamma\gamma$ coin. Deduced $\varepsilon + \beta^+$ feedings and log *ft* values.

1977Ko05: isotope produced by 58 Ni(32 S,np $\alpha\gamma$). Only two gamma rays of 540.0 and 722.8 keV reported.

1996Sh27: measured $\beta\gamma$ coin, deduced Q(ε).

Additional information 1.

 α : Additional information 2.

⁸⁴Zr Levels

E(level)	\mathbf{J}^{π}	T _{1/2}			Com	nents	
0 540.0 <i>I</i> 1119.5 <i>I</i> 1244? <i>I</i> 1263.0 <i>4</i> 1575.7 <i>3</i> 1966.7 <i>4</i>	$ \begin{array}{r} 0^+ \\ 2^+ \\ 2^+ \\ (0^+) \\ 4^+ \\ 3^+ \end{array} $	25.8 min 5	$T_{1/2}$: from Ad	opted Levels			
E(decay)	E(le	vel) Ιβ ^{+ ‡}	I $arepsilon^{\ddagger}$	$\log ft^{\dagger}$	$\frac{\varepsilon, \beta^+ \text{ radiations}}{I(\varepsilon + \beta^+)^{\frac{1}{1+}}}$	Comments	

E(uecay)	E(level)	ιρ ·	131	Log Ji	$I(\varepsilon + p)$	Comments
(8233 <i>SY</i>)	1966.7	8.2 14	0.050 11	6.19 <i>13</i>	8.2 14	av $E\beta$ =3.39×10 ³ 15; ε K=0.0053 7; ε L=0.00063 9; ε M+=0.000140 19
(8624 <i>SY</i>)	1575.7	10 4	0.052 22	6.21 20	10 4	av $E\beta$ =3.58×10 ³ 15; ε K=0.0045 6; ε L=0.00054 7; ε M+=0.000120 15
						I($\varepsilon + \beta^+$): from intensity balance (compiler). 2003Do01 give 12.0.
(8937 <i>SY</i>)	1263.0	5.9 16	0.027 8	6.52 15	5.9 16	av $E\beta$ =3.74×10 ³ 15; ε K=0.0040 5; ε L=0.00048 6; ε M+=0.000107 13
(8956 [#] SY)	1244?	<4.4	< 0.020	>6.7	<4.4	av $E\beta$ =3.74×10 ³ 15; ε K=0.0040 5; ε L=0.00047 6; ε M+=0.000106 13
(9080 <i>SY</i>)	1119.5	35 <i>3</i>	0.15 2	5.79 10	35 <i>3</i>	av $E\beta$ =3.81×10 ³ 15; ε K=0.0038 5; ε L=0.00045 6; ε M+=0.000101 12
						$(579\gamma)(5000\ 600\ \beta)\ coin\ (1996Sh27)\ gives\ Q(\varepsilon)=7.1$
						10200 300 from mass adjustment (2009AuZZ).
(9660 <i>SY</i>)	540.0	39 6	0.14 3	5.88 11	39 6	av $E\beta = 4.09 \times 10^3$ 15; $\varepsilon K = 0.0031$ 4; $\varepsilon L = 0.00037$ 4; $\varepsilon M + = 8.3 \times 10^{-5}$ 9
						I($\varepsilon + \beta^+$): from intensity balance (evaluators). 2003Do01 give 34.4.
						$(5\bar{4}0\gamma)(5700\ 400\ \beta)\ coin\ (1996Sh27)\ gives\ Q(\varepsilon)=7.2$ MeV 4.

[†] Since delayed-p emission is possible, and due to a large gap of \approx 7 MeV between the highest known populated level and Q(ε) value, the $\varepsilon + \beta^+$ feedings and associated log *ft* values should be considered as approximate and only as upper limits for feedings

Continued on next page (footnotes at end of table)

84 Nb ε decay 2003Do01 (continued)

ε, β^+ radiations (continued)

and lower limits for log ft values.

[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

$\gamma(^{84}\mathrm{Zr})$

Iy normalization: From sum Iy(g.s.)=100 if I β (g.s.)=0 as indicated by the strong feeding of the 4⁺ level. Delayed-p emission is energetically possible but not known.

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α	Comments
456.2 2	7.6 12	1575.7	3+	1119.5 2+			
540.0 1	100 2	540.0	2+	0 0+	E2	0.00334 5	$\alpha(K)=0.00293 5; \alpha(L)=0.000339 5; \alpha(M)=5.89\times10^{-5} 9; \alpha(N)=8.28\times10^{-6} 12; \alpha(O)=5.50\times10^{-7} 8 \alpha(N+)=8.83\times10^{-6} 13$
579.4 <i>1</i>	34 2	1119.5	2+	540.0 2+			
704 [‡] 1	<5	1244?	(0^{+})	540.0 2+			
723.0 3	6.7 17	1263.0	4+	540.0 2+			I_{γ} : other: 23 8 (1977Ko05).
1036.4 [‡] 5	6.1 15	1575.7	3+	540.0 2+			
1119.6 2 1426.7 <i>3</i>	13 2 9.3 15	1119.5 1966.7	2+	$ \begin{array}{ccc} 0 & 0^+ \\ 540.0 & 2^+ \end{array} $			

[†] For absolute intensity per 100 decays, multiply by 0.885 25.
[‡] Placement of transition in the level scheme is uncertain.

⁸⁴Nb ε decay 2003Do01

Decay Scheme

 $^{84}_{40}{
m Zr}_{44}$

3