Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	T. Kibedi and J. Timar	NDS 110,2815 (2009)	30-Sep-2009						

 $Q(\beta^{-}) = -1.04 \times 10^{4} \text{ syst}; S(n) = 13581 9; S(p) = 6505 20; Q(\alpha) = -3534 7$ 2012Wa38

Note: Current evaluation has used the following Q record -10200 SY13581 9 6505 20-3537 9 2009AuZZ. $\Delta(Q(\beta^{-}))=300$ (2009AuZZ).

Values in 2003Au03 are: $Q(\beta^{-}) = -9610 \ 360$, $S(n) = 13110 \ 220$, $S(p) = 6460 \ 200$, $Q(\alpha) = -3610 \ 200$; all from systematics.

 $Q(\beta^{-})$: $Q(\varepsilon)(^{84}Nb)=7.2$ MeV 4 from $\beta\gamma$ coin experiment (1996Sh27) is lower by at least 2 MeV, as also Q values for 80 Y and 88 Tc decays, thus these values were not used in the mass evaluations of 2009AuZZ and 2003Au03.

⁸⁴Zr evaluated by T. Kibédi and J. Timar.

Atomic mass measurement: 2006Ka48 (Penning-trap system).

⁸⁵Mo g.s. with 3.2 s half-life is estimated to decay by delayed-proton emission to ⁸⁴Zr with a probability of $\approx 0.14\%$ 2 (1999Hu05), but no experimental measurement of this decay mode are available.

```
Theory:
```

```
2008Af02: cranked relativistic mean-field theory
2004La18,1997Da16: SD structure analysis, tunneling features
1987Du02: cranking model
1983Bu09: interacting-boson model
1992Er02,1995Zh26: B(E2) systematics
1992Ma39,1993Sh09,1993Wa08,1995La07: relativistic mean-field theory
1987Du02: BCS pairing model)
1985Bo36,1993Ki04: Hartree-Fock + BCS
1979Bu20: shell corrections + pairing effects
```

⁸⁴Zr Levels

 μ are from g factors measured using transient-field technique in heavy-ion reactions (2001Zh44,1999Te02,1992Mo07). The evaluators have taken weighted averages of the available values. See also 2005St24 compilation where 2001Zh44 is not listed.

Cross Reference (XREF) Flags

Α	⁸⁴ Nb	ε	decay
Α	° ⁴ Nb	ε	decav

B ⁸⁵Mo ε p decay

 $(HI,xn\gamma)$

C

E(level) [†]	J ^π @	T _{1/2} ‡	XREF	Comments
0 ^{&}	0+	25.8 min 5	ABC	$%ε+%β^+=100$ T _{1/2} : weighted average of 25.7 min 5 (1983Sh27), 27.6 min 9 (1982Sa34), 24.0 min 13 (1982Li17) other: 27 min 2 (1982De36). Earlier reports of identification of ⁸⁴ Zr nuclide by 1971Yu02 with half-life of 5.0 min 5 and that of 1965Za02 with half-life of 16 min 4 were, most likely, incorrect nuclidic assignments.
539.92 ^{&} 9	2+	14.1 ps 8	ABC	 μ=+0.96 20 μ: transient-field methods in heavy-ion γ-ray studies. Weighted average g=+0.48 10 from g=+0.5 1 (1992Mo07), +0.24 35 (1999Te02), +0.5 5 (2001Zh44). T_{1/2}: 2001Ra27 evaluation gives adopted T_{1/2}=14.1 ps 8 and B(E2)(↑)=0.438 25.
1119.31 ^a 11 1244? 1	2^+ (0 ⁺)		A C A	J^{π} : possible γ to 2 ⁺ ; syst.
1262.81 ^{&} 13	4+	2.8 ps 4	A C	μ =+2.0 9 μ : transient-field methods in heavy-ion γ -ray studies. Weighted average g=+0.51 23

⁸⁴Zr Levels (continued)

E(level) [†]	Jπ@	$T_{1/2}^{\ddagger}$	XREF	Comments
				from g=+0.4 3 (1992Mo07), +0.70 65, +1.0 8 (1999Te02), +0.5 5 (2001Zh44).
1575.56 <mark>b</mark> 13	3+		AC	
1887.91^a 20	4+		c	
1966.6 4			A	J^{π} : γ to 2 ⁺ suggests 2 ⁺ ,3,4 ⁺ .
2136.39 ^{&} 16	6+	1.8 ps 3	С	$\mu = +3.4 21$
		Ĩ		 μ: transient-field methods in heavy-ion γ-ray studies. Weighted average g=+0.57 35 from g=+1.9 11 (1992Mo07), +0.20 56 (1999Te02), +0.6 5 (2001Zh44). T_{1/2}: other: 1.9 ps 4 (1996Ch02).
2335.36 ^b 20	5^{+}		С	-,- • • •
2739.9 ^{<i>a</i>} 11	6 ⁺		č	
2811.11 19	(4 ⁻)		c	
2825.89 ^c 21	(5-)	11 ps 4	C	μ =+6.0 20
		1		μ: transient-field methods in heavy-ion γ-ray studies. Weighted average g=+1.2 4 from g=+1.4 4 (Mountford's thesis, Manchester (1991), as quoted by 1993Ch41 and 1999Te02), +0.54 72 (1999Te02).
3078.91 21	(6 ⁻)		С	
3088.97 ^{&} 19	8+	0.39 [#] ps 7	С	$\mu = +10.5$
		Ĩ		μ: transient-field methods in heavy-ion γ-ray studies. Weighted average $g=+1.3$ 6 from $g=+1.5$ 6 (1992Mo07), $+1.0$ 6 (2001Zh44). T _{1/2} : others: 1.25 ps 7, (1992Mo07), 1.5 ps 4 (1996Ch02), 1.4 ps 4 (1983Pr08)
3202 3b 3	7+		C	I^{π} : from 2003De01 8 ⁺ was proposed earlier (1083Dr08 1003Cb41 1005H08)
3202.3 J	((-)		C	J. Holli 2005D001, 8 was proposed earlier (1985F108,1995Cli41,1995J108).
3313.44 ^a 23	(6)	5 4 21	C	
3493.89° 21	(7)	5.4 ps 21	C	
3332.0 3	(7)		C	
1026 88d 24	(7)		C	
4050.88 24	(8)	o.o.c#	C	0.5
4068.7 3	10*	0.36" ps 3	C	μ =+9.5 μ : transient-field methods in heavy-ion γ-ray studies. Weighted average g=+0.9 5 from g=+0.5 8 (1992Mo07), +1.2 7 (2001Zh44). T _{1/2} : others: 0.53 ps 3 (1992Mo07), 0.97 ps 21 (1996Ch02), 1.04 ps 21 (1983Pr08).
4137.6 ^b 4	9+		С	J^{π} : from 2003Do01, 10 ⁺ was proposed earlier (1983Pr08,1993Ch41,1995Ji08).
4378.70 [°] 22	(9 ⁻)		С	
4587.6 ^e 4	(10^{+})		С	
4869.39 ^d 25	(10^{-})		С	
5135.9 ^{&} 3	12+	0.248 [#] ps 22	С	 μ=+10 7 μ: transient-field methods in heavy-ion γ-ray studies. Weighted average g=+0.8 6 from g=+0.9 7 (1992Mo07), +0.8 6 (2001Zh44). T_{1/2}: others: 0.55 ps 14 (1996Ch02), 0.60 ps 3 (1992Mo07), 0.62 ps 14(1983Pr08).
5150.3 ^b 6	11+		С	J^{π} : from 2003Do01, 12 ⁺ was proposed earlier (1983Pr08.1993Ch41.1995Ji08).
5316.39 ^c 24	(11^{-})		Ċ	· · · · · · · · · · · · · · · · · · ·
5616.1 ^e 7	(12+)		C	
5785.3 ^d 4	(12^{-})		С	
6248.3 ^b 6	(13^+)		c	I^{π} : from 2003Do01, 14 ⁺ was proposed earlier (1993Ch41 1995Ii08)
6302 4 8 3	14+	$0.157^{\#} \approx 15$	C C	<i>u</i> -14 7
0J02.T J	17	0.1 <i>51</i> ps 15		μ : transient-field methods in heavy-ion γ -ray studies. Weighted average g=+1.0 5 from g=+1.3 5 (1992Mo07), +0.5 7 (2001Zh44).

⁸⁴Zr Levels (continued)

E(level) [†]	Jπ @	T _{1/2} ‡	XREF	Comments
				$T_{1/2}$: others: 0.42 ps <i>14</i> (1996Ch02), 0.340 ps <i>21</i> (1992Mo07), 0.35 ps <i>3</i> (1983Pr08).
6324.5 ^c 4	(13-)	0.46 [#] ps <i>10</i>	С	
6643.6 ^e 4	(14^{+})	-	С	
6796.9 ^d 4	(14-)	0.51 [#] ps 8	С	
7300.1 ^b 5	(15^{+})		С	
7411.1 [°] 5	(15 ⁻)	0.30 [#] ps 8	С	
7498.0 ^{&} 4	16+	0.166 [#] ps <i>15</i>	С	μ =+8 <i>11</i> (2001Zh44) μ : transient-field methods in heavy-ion γ -ray studies. g=+0.5 <i>7</i> (2001Zh44). T _{1/2} : others: 0.15 ps <i>5</i> (1996Ch02), 0.12 ps (1992Mo07), 0.125 ps <i>14</i> (1983Pr08), g-factor estimated as +0.6 <i>1</i> .
7857.4 ^e 7	(16^{+})		С	
7929.0 ^d 6	(16 ⁻)	232 [#] fs <i>19</i>	С	
8499.1 ^b 11	(17^{+})		С	
8608.1 ^C 11	(17^{-})	0.16 [#] ps 5	С	
8743.6 ^{&} 4	18^{+}	0.131 [#] ps <i>11</i>	С	T _{1/2} : others: 0.12 ps 4 (1996Ch02), 0.111 ps 7 (1983Pr08).
9196.7 <mark>d</mark> 11	(18 ⁻)	107 [#] fs 23	С	
9220.5 ^e 8	(18^{+})		С	
9917.2 ⁶ 15	(19 ⁺)		С	
9936.2 ^c 12	(19 ⁻)	0.15 [#] ps 4	С	
10175.5 ^{&} 5	20^{+}	64 [#] fs 8	С	T _{1/2} : others: 69 fs 35 (1996Ch02), 21 fs 7 (1983Pr08).
10445.0 ^e 8	(20^{+})	u.	С	
10597.6 ^{<i>a</i>} 11	(20^{-})	58 [#] fs 17	С	
11413.2 ^c 15	(21 ⁻)	0.09 [#] ps 4	С	
11552.2 ⁰ 18	(21^{+})		С	
11821.1 6	22^{+}	30 [#] fs 7	С	$T_{1/2}$: others: 35 fs 14 (1996Ch02), 14 fs 7 (1983Pr08).
12165.3 ^{<i>d</i>} 12 12257.9 ^{<i>e</i>} 11	(22 ⁻) (22 ⁺)	39 [#] fs 16	C C	
13078.3 ^c 18	(23 ⁻)	44 [#] fs 16	С	
13666.3 <mark>&</mark> 8	24+	13 [#] fs 9	С	$T_{1/2}$: other: <7 fs (1983Pr08).
13974.0 ^d 12	(24 ⁻)	21 [#] fs <i>17</i>	С	
14253.8 ^e 12	(24^{+})		С	
14938.3 ^c 21	(25 ⁻)	84 [#] fs 20	С	
15659.9 ^{&} 10	26^{+}	19 [#] fs 9	С	
15947.8 ^f 12	(26^{+})		С	
16060.1 ^d 16	(26 ⁻)	21 [#] fs 21	С	
17013.3 [°] 23	(27 ⁻)		С	
17717.88 10	(25 ⁻)	14 fs +40-10	C	 J[*]: ≈(21) from 1995Ji08 and 2003Le08. T_{1/2}: from Doppler-shift analysis (2006Ch09). 55% branching to normal-deformed states, but only about 2% is accounted for by three transitions from this level to the normal- deformed states.
17806.0 ^{&} 14	(28^{+})	10 [#] fs 8	С	
18032.4 ^{<i>f</i>} 12	(28 ⁺)		С	
18465.1 ^d 19	(28 ⁻)	56 [#] fs <i>14</i>	С	
19244.8 <mark>8</mark> 14	(27 ⁻)		С	45% branching to normal-deformed states.
19551 [°] 3	(29-)	#	С	
20283.0 [∞] 17	(30 ⁺)	33" fs 10	С	

⁸⁴Zr Levels (continued)

E(level) [†]	J ^π @	XREF	E(level) [†]	Jπ [@]	XREF	E(level) [†]	Jπ [@]	XREF
20618.5 ^{<i>f</i>} 16	(30+)	С	23180.0 ^{&} 20	(32+)	С	29062 <mark>8</mark> 3	(37-)	С
20907.8 ^g 18	(29 ⁻)	С	23235.5 ^f 19	(32 ⁺)	С	31497 <mark>8</mark> <i>3</i>	(39 ⁻)	С
21293.1 ^d 21	(30 ⁻)	С	24676.9 ⁸ 23	(33 ⁻)	С	32164 <i>3</i>	(39 ⁻)	С
22420 [°] 3	(31-)	С	26790.9 <mark>8</mark> 25	(35 ⁻)	С	34097 <mark>8</mark> <i>3</i>	(41 ⁻)	С
22717.9 ^g 20	(31 ⁻)	С	26830.1 ^{&} 23	(34 ⁺)	С	36877 <mark>8</mark> 4	(43 ⁻)	С

[†] From least-squares fit to $E\gamma's$.

[‡] From recoil-distance Doppler-shift and Doppler-shift attenuation from 1983Pr08, except where indicated otherwise.

[#] From Doppler-shift analysis (2003Ca26), gate from above (GFA) technique used, except for the two topmost transitions in each band.

^(a) From stretched Q nature of intraband transitions, determined by DCO ratios. The side-band J^{π} are given in parentheses as their bandhead J^{π} are not well established.

[&] Band(A): g.s. band. 1992Mo07 state that there exists strong correlation between the individually deduced g-factors and that it is more meaningful to quote an average g-factor=+0.87 *10* for 8⁺ to 14⁺ states in this band.

^{*a*} Band(B): γ band, α =0.

^{*b*} Band(b): γ band, $\alpha = 1$.

^{*c*} Band(C): band based on 5⁻, α =1.

^d Band(c): band based on 6^- , $\alpha=0$.

^{*e*} Band(D): Band based on (10⁺), α =0. Dominant configuration= $\pi(g_{9/2}^2 p_{1/2}^{-2})\nu(g_{9/2}^6)$ (2003Ca26).

f Band(E): band based on (26⁺).

^{*g*} Band(F): SD band. Band from 2006Ch09,2003Le08 and 1995Ji08. Q(transition)=5.6 +6-5 (1999Le56,2003Le08); 5.2 *10* (1995Ji08), 4.98 +25-30 (2005ChZZ). Configuration= $v5^2\pi5^1$ (1999Le56). Percent population=3 in (32 S, $\alpha2p\gamma$) (2006Ch09), 6.4 in (29 Si,2pn γ) (2003Le08), 4 (1995Ji08); 2 in (32 S, $\alpha2p\gamma$) (1995Ji08).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
539.92	2+	539.9 1	100	0 0+	E2		B(E2)(W.u.)=40 2
1119.31	2+	579.3 <i>1</i>	100 6	539.92 2+	(M1+E2)	-0.03 1	
		1119.4 2	38 4	$0 0^{+}$			
1244?	(0^{+})	704 [#] 1	100	539.92 2+			
1262.81	4+	722.9 1	100	539.92 2+	E2		B(E2)(W.u.)=47 7
1575.56	3+	456.2 <i>1</i>	100 6	1119.31 2+	M1+E2	$\approx +0.7$	
		1035.8 2	62 6	539.92 2+			
1887.91	4+	312.2 <i>3</i>	29 14	1575.56 3+			
		625.2 <i>3</i>	36 21	1262.81 4+			
		768.5 <i>3</i>	100 13	1119.31 2+	(Q)		
1966.6		1426.7 <i>3</i>	100	539.92 2+			
2136.39	6+	873.6 <i>1</i>	100	1262.81 4+	E2		B(E2)(W.u.)=28.5
2335.36	5+	759.8 2	100 7	1575.56 3+	E2		
		1072.4 <i>3</i>	31 5	1262.81 4+	D		
2739.9	6+	603 [#] 1	22 11	2136.39 6+			
		852 <i>1</i>	100 33	1887.91 4+			
2811.11	(4 ⁻)	475.3 5	61 17	2335.36 5+			
		922.9 4	77 15	1887.91 4+			
		1235.6 2	100 12	1575.56 3+	D		
		1548 <i>1</i>	≈48	1262.81 4+			
2825.89	(5 ⁻)	1563.1 <i>3</i>	100	1262.81 4+	(E1+M2)	+0.05 4	B(E1)(W.u.)=8.E-6 3; B(M2)(W.u.)=0.04 +7-4
3078.91	(6 ⁻)	253.1 2	50 7	2825.89 (5 ⁻)	D		
		267.7 2	100 8	2811.11 (4 ⁻)	Q		

 $\gamma(^{0+}Zr)$

$\gamma(^{84}\text{Zr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
3088.97	8+	952.6 1	100	2136.39	6+	E2		B(E2)(W.u.)=85 16
3202.3	7+	866.9 2	100	2335.36	5+	0		
3313 44	(6^{-})	226 <mark>#</mark> 1		3088 97	8+	[M2]		
5515.11	(0)	487 5 1	100.5	2825.89	(5^{-})	(M1+E2)	+0.06.2	
3493 89	(7^{-})	406.1	100 5	3088.97	8+	(1111122)	10.00 2	
5175.07	(,)	415.0.2	9.7.18	3078.91	(6^{-})	D		
		668.0.2	17.3	2825.89	(5^{-})	E2		$B(E2)(W_{II}) = 4.8.21$
		1357 5 3	100.8	2136 39	6 ⁺	(E1+M2)	+0.06.1	$B(E1)(Wu) = 21 \times 10^{-5} 9 B(M2)(Wu) = 0.18$
		1007.00	100 0	2100.07	0	(1111112)	10.00 1	10
3552.0	(7^{-})	473 1	≈23	3078.91	(6^{-})			
		726.4 4	33 7	2825.89	(5^{-})			
		1415.5 4	100 12	2136.39	6+	D		
3722.6	(7^{-})	1586 <i>1</i>	100	2136.39	6 ⁺			
4036.88	(8-)	543.1 2	39 4	3493.89	(7^{-})	D+O		
	(-)	723.0 4	100 15	3313.44	(6 ⁻)	0		
		834 [#]		3202.3	7+	-		
		95793	17 5	3078 91	(6^{-})			
4068 7	10^{+}	979 7 2	100	3088 97	8+	E2		$B(E2)(W_{\rm H}) = 80.7$
4137.6	9+	935.4.3	100	3202.3	7 ⁺	0		B(E2)(11.0.)=007
4378.70	(9-)	656 1	≈12	3722.6	(7^{-})	×		
1070170	(-)	826.9.3	20.4	3552.0	(7^{-})	0		
		884.8 /	100.5	3493.89	(7^{-})	õ		
		1289.6 4	10.3	3088.97	8+	×		
4587.6	(10^{+})	518.9.3	100 16	4068.7	10+	D		
	(1499 7	60 16	3088.97	8+			
4869.39	(10^{-})	490.6 3	11.0 17	4378.70	(9-)			
	(-)	832.5 1	100 6	4036.88	(8 ⁻)	0		
5135.9	12^{+}	1067.2 <i>1</i>	100	4068.7	10+	Ē2		B(E2)(W.u.)=75 7
5150.3	11^{+}	1012.7 5	100	4137.6	9+	Q		
5316 39	(11^{-})	449 [#]		4869 39	(10^{-})	-		
0010.07	(11)	937 7 1	100.9	4378 70	(9^{-})	E2		
5616.1	(12^{+})	481	100 2	5135.9	12+			
	()	1028 /	100	4587.6	(10^{+})			
5785.3	(12^{-})	470 1	16 4	5316.39	(11^{-})			
		915.8 2	100 10	4869.39	(10^{-})	0		
6248.3	(13^{+})	1098.1 4	100	5150.3	11+	ò		
6302.4	14+	1166.5 <i>1</i>	100	5135.9	12^{+}	Ē2		B(E2)(W.u.)=76 8
6324.5	(13^{-})	1008.1 <i>3</i>	100	5316.39	(11^{-})	E2		$B(E2)(W.u.) = 54 \ 12$
6643.6	(14^{+})	1028 <i>1</i>	≈37	5616.1	(12^{+})			
		1507.6 <i>3</i>	100 11	5135.9	12+			
6796.9	(14^{-})	1011.6 2	100	5785.3	(12^{-})	E2		B(E2)(W.u.)=48 8
7300.1	(15^{+})	656.4 <i>4</i>	100 13	6643.6	(14^{+})	D		
		1051.96	65 20	6248.3	(13^{+})	Q		
7411.1	(15^{-})	615		6796.9	(14^{-})			
		1086.6 2	100	6324.5	(13-)	E2		B(E2)(W.u.)=57 16
7498.0	16^{+}	1195.6 <i>1</i>	100	6302.4	14^{+}	E2		B(E2)(W.u.) = 64 6
7857.4	(16^{+})	557		7300.1	(15^{+})			
		1213 <i>1</i>	≈83	6643.6	(14+)			
		1555 <i>1</i>	100 27	6302.4	14+			
7929.0	(16 ⁻)	521	100	7411.1	(15 ⁻)			
0.400.5	(1 - 1)	1131.9 5	100	6796.9	(14 ⁻)	(E2)		B(E2)(W.u.)=605
8499.1	(17^+)	1199 1	100	7300.1	(15^+)			
8608.1	$(1')^{-})$	6//	100	/929.0	(16^{-})			
		1197/1	100	/411.1	(15^{-})	[E2]		B(E2)(W.u.)=66 21

$\gamma(^{84}\text{Zr})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
8743.6	18^+	1245.7 2	100	7498.0	16+	E2	B(E2)(W.u.)=66 6
9196.7	(18 ⁻)	589 1267 <i>1</i>	100	8608.1 7929.0	(17^{-}) (16^{-})	[E2]	B(E2)(W.u.)=74 16
9220.5	(18 ⁺)	1362 1723		7857.4 7498.0	(16 ⁺) 16 ⁺		
9917.2	(19^{+})	1418		8499.1	(17^+)		
9936.2	(19 ⁻)	740		9196.7	(18 ⁻)		
		1328.1 <i>3</i>		8608.1	(17^{-})	[E2]	B(E2)(W.u.)=42 12
10175.5	20^{+}	1431.9 <i>3</i>	100	8743.6	18+	E2	B(E2)(W.u.)=67 9
10445.0	(20^{+})	1224		9220.5	(18^{+})		
		1702		8743.6	18+		
10597.6	(20^{-})	664		9936.2	(19 ⁻)	(5.0)	D (EQ) (III -) - 02 - 05
11410.0	(01 = 0)	1400.9 3		9196.7	(18)	[E2]	B(E2)(W.u.)=83.25
11413.2	(21)	813		10597.6	(20)	[[[0]]	$\mathbf{D}(\mathbf{EQ})(\mathbf{W}) = \mathbf{A}1 + \mathbf{A}0$
11552.2	(21^{+})	14// 1		9936.2	(19)	[E2]	B(E2)(W.U.)=41 19
11992.2	(21) 22+	1645 7 3	100	10175 5	(19)	E2	$B(E2)(W_{11}) - 72.17$
12165.3	(22^{-})	754	100	11413.2	(21^{-})	ĽŹ	D(E2)(W.u.) = 72.17
12105.5	(22)	1567 1		10597.6	(21^{-})	[E2]	$B(E2)(W_{II}) = 7 E + 1 3$
12257.9	(22^{+})	1813		10445.0	(20^+)	[22]	
13078.3	(23^{-})	912		12165.3	(22^{-})		
		1665 <i>1</i>		11413.2	(21-)	[E2]	B(E2)(W.u.)=46 17
13666.3	24^{+}	1845.3 6	100	11821.1	22^{+}	E2	B(E2)(W.u.)=9.E+1 7
13974.0	(24 ⁻)	1808 <i>1</i>		12165.3	(22 ⁻)	[E2]	B(E2)(W.u.)=6.E+1~6
14253.8	(24^{+})	1996		12257.9	(22^{+})		
14938.3	(25 ⁻)	1860 <i>1</i>		13078.3	(23 ⁻)	[E2]	B(E2)(W.u.) = 14.4
15659.9	26+	1993.5 6	100	13666.3	24+	E2	B(E2)(W.u.)=43 21
15947.8	(26^{+})	2282 1		13666.3	24	[[[0]]	$\mathbf{D}(\mathbf{EQ})(\mathbf{W}_{1}) = 2\mathbf{E} \cdot 1 \cdot \mathbf{A} = 2$
16060.1	(26)	2086 1		139/4.0	(24)	[E2]	B(E2)(W.u.)=3.E+1+4-3
1/013.3	(27)	2075	a aa (†	14938.3	(25)		
17/17.8	(25^{-})	3464	0.004+	14253.8	(24+)		
		3743	0.007+	13974.0	(24 ⁻)	D+Q	Mult.: from $\Delta J=1$, D+Q (most likely M1+E2) from $\gamma(\theta)$ (2006Ch09).
		4052	0.009^{\ddagger}	13666.3	24+	D	Mult.: $\Delta J=1$, dipole from $\gamma(\theta)$ (2006Ch09).
17806.0	(28^{+})	2146 <i>1</i>		15659.9	26^{+}	[E2]	B(E2)(W.u.)=6.E+15
18032.4	(28^+)	2085 1		15947.8	(26^{+})		
		2372 1		15659.9	26^{+}		
18465.1	(28^{-})	2405 1		16060.1	(26 ⁻)	[E2]	B(E2)(W.u.)=5.7 15
19244.8	(27 ⁻)	1527 <i>1</i>	0.55 [‡] 5	17717.8	(25 ⁻)		
19551	(29 ⁻)	2538		17013.3	(27-)	[E2]	B(E2)(W.u.)=7.5 23
20283.0	(30^+)	2477 1		17806.0	(28^+)		
20618.5	(30^{+})	2586 I	.L.	18032.4	(28+)		
20907.8	(29 ⁻)	1663 <i>1</i>	$1.00^{+}5$	19244.8	(27 ⁻)		
21293.1	(30^{-})	2828		18465.1	(28^{-})		
22420	(31)	2869	4	19551	(29)		
22717.9	(31 ⁻)	1810 <i>1</i>	$1.00^{+}5$	20907.8	(29 ⁻)		
23180.0	(32^+)	2897		20283.0	(30^+)		
23235.5	(321)	261/1	+	20618.5	(30')		
24676.9	(33 ⁻)	1959 <i>1</i>	1.00+ 5	22717.9	(31 ⁻)		
26790.9	(35 ⁻)	2114 <i>1</i>	$1.00^{\ddagger} 5$	24676.9	(33 ⁻)		
26830.1	(34+)	3650		23180.0	(32^{+})		
29062	(37 ⁻)	2271 <i>I</i>	$0.90^{\pm} 5$	26790.9	(35 ⁻)		
31497	(39-)	2435 1	0.5 [‡] 1	29062	(37-)		

 $\gamma(^{84}$ Zr) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
32164	(39-)	3102		29062	(37-)
34097	(41 ⁻)	2600 1	0.3 [‡] 1	31497	(39-)
36877	(43 ⁻)	2780	0.06 [‡] 5	34097	(41 ⁻)

[†] From weighted averages of all available data.
[‡] Relative intensities within the SD band.
[#] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{84}_{40}$ Zr₄₄

 $^{84}_{40}$ Zr₄₄-9

 $^{84}_{40}{\rm Zr}_{44}$

 $^{84}_{40}{
m Zr}_{44}$

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{84}_{40}$ Zr₄₄

11

Adopted Levels, Gammas

 $^{84}_{40}{\rm Zr}_{44}$

 $^{84}_{40}{
m Zr}_{44}$