${ }^{84} \operatorname{Sr}(\mathbf{p}, \mathbf{n} \gamma) \quad$ 2005Io02

$\frac{\text { Type }}{}$| Author |
| :---: |
| Full Evaluation |

2005Io02: ${ }^{84} \mathrm{Sr}(\mathrm{p}, \mathrm{n}), \mathrm{E}=13.5 \mathrm{MeV}$. Measured $\mathrm{E} \gamma, \mathrm{I} \gamma, \gamma \gamma, \gamma \gamma(\mathrm{t})$, lifetimes using large volumes and planar HPGe detectors and $\mathrm{NaI}(\mathrm{Tl})$ crystals. Recorded prompt spectra (time gate of 20 ns centered on the beam pulse), and delayed spectra (time gate 60-220 ns after the beam pulse, corrected for background from long-lived activities by subtracting a spectrum recorded In the time interval $3060-3220 \mathrm{~ns}$ after the beam pulse). Only the delayed γ^{\prime} s were analyzed and placed In a level scheme. Measured g factors by time-differential perturbed angular distributions In an external magnetic field.

${ }^{84}$ Y Levels

$\underline{\mathrm{E}\left(\text { level) }{ }^{\dagger}\right.}$	J^{π}	$\mathrm{T}_{1 / 2}$	Comments
0.0^{\ddagger}	$\left(6^{+}\right)^{\#}$	$39.5{ }^{\#} \min 8$	
$67.0 \ddagger 2$	$1^{+}{ }^{\text {\# }}$	$4.6{ }^{\#}$ s 2	Additional information 1.
112.3517	$\left(4^{+}\right)$	$79^{@} \mathrm{~ns} 2$	$\mathrm{g}=+0.5787$ (2005Io02)
			$\mathrm{E}($ level): existence of isomer deduced by observation of $112.4 \gamma(\mathrm{t})$ decay curve with two components. $\mathrm{J}^{\pi}: \Delta \mathrm{J}=0 \gamma$ from (4^{-}), 210 keV ; $\pi=(+)$ from $\mathrm{E} 2 \gamma$ to $\left(6^{+}\right)$, g.s.. Possible configuration $=\pi 1 \mathrm{~g}_{9 / 2} \otimes v 1 \mathrm{~g}_{9 / 2}$.
130.4017	$\left(2^{-}\right)$		$\mathrm{J}^{\pi}: \mathrm{E} 2 \gamma$ from (4-), 210 keV ; (E1) γ to $1^{+}, 67 \mathrm{keV}$.
148.6517	$\left(5^{+}\right)$		J^{π} : (E1) γ from (4^{-}), 210 keV and ($\mathrm{D}(+\mathrm{Q})$) γ to (6^{+}), g.s..
210.4017	$\left(4^{-}\right)$	$292{ }^{\text {@ }} \mathrm{ns} 10$	$\mathrm{g}=+0.2346(2005 \mathrm{Io} 02)$ $\mathrm{E}\left(\right.$ level): existence of isomer deduced by observation of prompt and delayed $\gamma^{\prime} \mathrm{s}, \gamma(\mathrm{t})$ measurements for the delayed γ^{\prime} s (61.7, 63.4, 80.9, 98.1, 112.4, and 148.6), and coincidence measurement (112.4γ and 61.7γ, gated by the 98.1γ and 148.6γ, respectively). $\mathrm{J}^{\pi}: 0$ to 4 from E2 and D γ cascade to $1^{+}, 67 \mathrm{keV}$; 4 to 8 from D plus D γ cascade to $\left(6^{+}\right)$ g.s.. $\pi=(-)$ from (E1) γ to $\left(4^{+}\right), 112 \mathrm{keV}$. Configuration $=\pi 3 / 2[301] \otimes v 5 / 2[422]$.

${ }^{\dagger}$ From least-squares fit to $\mathrm{E} \gamma^{\prime}$ s.
${ }^{\ddagger}$ The ordering of the $\left(6^{+}\right)$and 1^{+}states proposed by 2005Io02 is the same as that proposed by 2000Do10 $\left({ }^{84} \mathrm{Zr} \varepsilon\right.$ decay dataset), but obtained independently (except for the 112γ, the reactions and details of the level schemes are different). This supersedes the reversed ordering, with the 1^{+}as g.s., and with (5^{-}) (instead of $\left(6^{+}\right)$) for the $39.5-\mathrm{min}$ activity, adopted previously (1997Tu02 and references therein).
\# From Adopted Levels.
${ }^{\circledR}$ Deduced from $\gamma \gamma(\mathrm{t})$ spectra (2005Io02).

E_{γ}	I_{γ}	$\mathrm{E}_{i}($ level $)$	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult. ${ }^{\ddagger}$	α^{\dagger}	Comments
${ }^{\text {x }}$, ${ }^{\text {\# }}$								
${ }^{4} 44.6{ }^{\text {\# }}$								
${ }^{x} 61.3{ }^{\text {\# }}$								
61.72	424	210.40	$\left(4^{-}\right)$	148.65	$\left(5^{+}\right)$	(E1)	0.4408	Mult.: D γ from $\mathrm{I}(148 \gamma) / \mathrm{I}(61 \gamma)$ ratio; according to 2005Io02, (E1) is more likely, based on $\mathrm{B}(\mathrm{E} 1)$ (W.u. $)=1.16 \times 10^{-6} 14$, similar to values reported for E1 transitions in this region (while $\mathrm{B}(\mathrm{M} 1)$ (W.u.) is far from the usual values for M1 transitions in this region).
63.42	7.98	130.40	$\left(2^{-}\right)$	67.0	1^{+}	(E1)	0.4077	Mult.: D from $\mathrm{I}(63 \gamma) / \mathrm{I}(80 \gamma)$ ratio; (E1) more likely based on $\Delta \pi=($ yes $)$ from level scheme.

[^0]$$
\underline{\gamma\left({ }^{84} \mathrm{Y}\right)} \text { (continued) }
$$

E_{γ}	I_{γ}	$\mathrm{E}_{i}($ level $)$	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult. ${ }^{\ddagger}$	α^{\dagger}	Comments
	4.06	210.40	(4)	130.40	$\left(2^{-}\right)$	E2	2.40	
${ }^{x} 85.1{ }^{\text {\# }}$								
${ }^{x} 92.4{ }^{\text {\# }}$								
98.12	1009	210.40	$\left(4^{-}\right)$	112.35	$\left(4^{+}\right)$	(E1)	0.1137	Mult.: D γ from $\mathrm{I}(112 \gamma) / \mathrm{I}(98 \gamma)$ ratio; $\Delta \mathrm{J}=0$ supported by angular distribution coefficient $\mathrm{A}_{2}>0$; according to 2005Io02, (E1) is more likely, based on $\mathrm{B}(\mathrm{E} 1)$ (W.u. $)=6.9 \times 10^{-7} 8$, similar to values reported for E1 transitions in this region (while $\mathrm{B}(\mathrm{M} 1)$ (W.u.) is far from the usual values for M1 transitions in this region).
112.42	698	112.35	$\left(4^{+}\right)$	0.0	$\left(6^{+}\right)$	E2	0.694	I_{γ} : Deduced from a delayed spectrum when the 79 -ns component is totally decayed; corrected for its own lifetime (2005Io02).
${ }^{x} 116.4$ \#								
${ }^{x} 131.4{ }^{\text {\# }}$								
148.62	586	148.65	$\left(5^{+}\right)$	0.0	$\left(6^{+}\right)$	(M1 (+E2))		Mult.: D or E2 γ from $\mathrm{I}(148 \gamma) / \mathrm{I}(61 \gamma)$ ratio; $\Delta \mathrm{J}=1$, (D) from angular distribution coefficient $\mathrm{A}_{2}<0$ ($\Delta \mathrm{J}=1, \mathrm{D}+\mathrm{Q}$ not excluded); (M1(+E2)) based on $\Delta \pi=(\mathrm{no})$ from level scheme.
${ }^{x} 151.1{ }^{\text {\# }}$								
${ }^{x} 163.6{ }^{\text {\# }}$								
${ }^{x} 168.0$ \#								
${ }^{x} 169.4{ }^{\text {\# }}$								
${ }^{x} 173.9$ \#								
$x_{216.1}{ }^{\text {\# }}$								

\dagger Additional information 2.

* Deduced by 2005Io02 from γ-ray experimental intensity ratios for the three groups of two-by-two coincident transitions with same $\mathrm{I}(\gamma+\mathrm{ce})$, compared to ratios calculated assuming either of the M1, E1, and E 2 multipolarities for the two transitions. For some γ^{\prime} s extra arguments are given in the table comments when needed.
\# Unplaced prompt γ from spectral figure of 2005Io02.
${ }^{x} \gamma$ ray not placed in level scheme.
${ }^{84} \mathbf{S r}(\mathbf{p}, \mathbf{n} \gamma) \quad$ 2005Io02

Level Scheme
Intensities: Relative I_{γ}

[^0]: Continued on next page (footnotes at end of table)

