⁸⁴Sr(p,nγ) 2005Io02

	I	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica and M. Bostan	NDS 110,2815 (2009)	30-Sep-2009

2005Io02: ⁸⁴Sr(p,n), E=13.5 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(t)$, lifetimes using large volumes and planar HPGe detectors and NaI(Tl) crystals. Recorded prompt spectra (time gate of 20 ns centered on the beam pulse), and delayed spectra (time gate 60-220 ns after the beam pulse, corrected for background from long-lived activities by subtracting a spectrum recorded In the time interval 3060-3220 ns after the beam pulse). Only the delayed γ 's were analyzed and placed In a level scheme. Measured g factors by time-differential perturbed angular distributions In an external magnetic field.

⁸⁴Y Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0 [‡]	$(6^+)^{\#}$	39.5 [#] min 8	
67.0 [‡] 2	1+ #	4.6 [#] s 2	Additional information 1.
112.35 17	(4^{+})	79 [@] ns 2	g=+0.578 7 (2005Io02)
			E (level): existence of isomer deduced by observation of 112.4 γ (t) decay curve with two components.
			J^{π} : $\Delta J = 0 \gamma$ from (4 ⁻), 210 keV; $\pi = (+)$ from E2 γ to (6 ⁺), g.s
			Possible configuration= $\pi 1g_{9/2} \otimes \nu 1g_{9/2}$.
130.40 17	(2^{-})		J^{π} : E2 γ from (4 ⁻), 210 keV; (E1) γ to 1 ⁺ , 67 keV.
148.65 17	(5^{+})		J^{π} : (E1) γ from (4 ⁻), 210 keV and (D(+Q)) γ to (6 ⁺), g.s
210.40 17	(4 ⁻)	292 [@] ns 10	$g=+0.234\ 6\ (2005Io02)$
			E(level): existence of isomer deduced by observation of prompt and delayed γ 's, γ (t) measurements for the delayed γ 's (61.7, 63.4, 80.9, 98.1, 112.4, and 148.6), and coincidence measurement (112.4 γ and 61.7 γ , gated by the 98.1 γ and 148.6 γ , respectively). J ^{π} : 0 to 4 from E2 and D γ cascade to 1 ⁺ , 67 keV; 4 to 8 from D plus D γ cascade to (6 ⁺) g.s π =(-) from (E1) γ to (4 ⁺), 112 keV. Configuration= π 3/2[3011 \otimes γ 5/2[422].

[†] From least-squares fit to $E\gamma's$.

[‡] The ordering of the (6⁺) and 1⁺ states proposed by 2005Io02 is the same as that proposed by 2000Do10 (⁸⁴Zr ε decay dataset), but obtained independently (except for the 112 γ , the reactions and details of the level schemes are different). This supersedes the reversed ordering, with the 1⁺ as g.s., and with (5⁻) (instead of (6⁺)) for the 39.5-min activity, adopted previously (1997Tu02 and references therein).

 $\gamma(^{84}Y)$

From Adopted Levels.

[@] Deduced from $\gamma\gamma(t)$ spectra (2005Io02).

Eγ	Iγ	E _i (level)	\mathbf{J}_i^{π}	E _f	J_f^{π}	Mult. [‡]	α^{\dagger}	Comments
$ x41.1^{\#} x44.6^{\#} x61.3^{\#} 61.7 2 $	42 4	210.40	(4 ⁻)	148.65	(5 ⁺)	(E1)	0.440 8	Mult.: D γ from I(148 γ)/I(61 γ) ratio; according to 2005Io02, (E1) is more likely, based on
63.4 2	7.9 8	130.40	(2 ⁻)	67.0	1+	(E1)	0.407 7	B(E1)(W.u.)= 1.16×10^{-6} 14, similar to values reported for E1 transitions in this region (while B(M1)(W.u.) is far from the usual values for M1 transitions in this region). Mult.: D from I(63 γ)/I(80 γ) ratio; (E1) more likely based on $\Delta \pi$ =(yes) from level scheme.

Continued on next page (footnotes at end of table)

84 Sr(p,n γ) 2005Io02 (continued)								
$\gamma(^{84}\text{Y})$ (continued)								
E _γ 80.0 2	I _γ 4.0 6	$\frac{\mathrm{E}_i(\mathrm{level})}{210.40}$	$\frac{\mathbf{J}_i^{\pi}}{(4^-)}$	$\frac{\mathrm{E}_{f}}{130.40}$	$\frac{\mathbf{J}_f^{\pi}}{(2^-)}$	Mult. [‡] E2	$\frac{\alpha^{\dagger}}{2.40}$	Comments
^x 85.1 [#] ^x 92.4 [#] 98.1 2	100 9	210.40	(4-)	112.35 ((4+)	(E1)	0.1137	Mult.: D γ from I(112 γ)/I(98 γ) ratio; Δ J=0 supported by angular distribution coefficient A ₂ >0; according to 2005Io02, (E1) is more likely, based on B(E1)(W.u.)=6.9×10 ⁻⁷ 8,
112.4 2 ^x 116.4 [#]	69 8	112.35	(4+)	0.0 ((6+)	E2	0.694	similar to values reported for E1 transitions in this region (while B(M1)(W.u.) is far from the usual values for M1 transitions in this region). I_{γ} : Deduced from a delayed spectrum when the 79-ns component is totally decayed; corrected for its own lifetime (20051002).
^x 131.4 [#] 148.6 2	58 6	148.65	(5 ⁺)	0.0 ((6+)	(M1(+E2))		Mult.: D or E2 γ from I(148 γ)/I(61 γ) ratio; $\Delta J=1$, (D) from angular distribution coefficient $A_2<0$ ($\Delta J=1$, D+Q not excluded); (M1(+E2)) based on $\Delta \pi=(no)$ from level scheme.
x151.1# x163.6# x168.0# x169.4# x173.9# x216.1#								

[†] Additional information 2.

^{\ddagger} Deduced by 2005Io02 from γ -ray experimental intensity ratios for the three groups of two-by-two coincident transitions with same I(γ +ce), compared to ratios calculated assuming either of the M1, E1, and E2 multipolarities for the two transitions. For some γ 's extra arguments are given in the table comments when needed. [#] Unplaced prompt γ from spectral figure of 20051002.

 $x \gamma$ ray not placed in level scheme.

 $^{84}_{39} Y_{45}$