History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	B. Singh, A. Negret, and K. Zuber	NDS 110,2815 (2009)	30-Sep-2009					

Includes 74 Ge(12 C,2n γ) from 1989Ku11.

1982De05 (also 1980De41): ⁸¹Br(⁶Li,3n γ) E=19-30 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, excitation functions. ⁷⁶Ge(¹²C,4n γ) E=48-60 MeV; measured $\gamma\gamma$, $\gamma(\theta)$, lifetimes measured by recoil- distance Doppler-shift (RDDS) method. Enriched targets, Ge(Li)

detectors.

Other measurements:

1989Ku11: ⁷⁴Ge(${}^{12}C,2n\gamma$) E=215 MeV. Measured g factors by transient-field technique. For these measurements, 1989Ku11 used g=+0.419 47 (1988Ku01) for the first 2⁺ state as a reference value.

1982BrZO: ⁷⁶Ge(¹²C,4ny) E=42-52 MeV. Measured lifetimes of 2808 and 3332 levels by recoil-distance method.

1981Br20: ⁷⁶Ge(12 C,4n γ) E=62 MeV; measured g factor of first 8⁺ state, spin precession in polarized hyperfine fields, tilted geometry.

1972InZU: ⁷⁶Ge(¹²C,4n γ) E=55-68 MeV; measured E γ , I γ , $\gamma\gamma$. Proposed yrast states up to 8⁺ (794, 1769, 2811 and 3927) and non-yrast states at 1457,2⁺ and 2057,3⁺.

Additional information 1.

⁸⁴Sr Levels

All g factors are from 1989Ku11 in 74 Ge(12 C,2n γ) E=215 MeV reaction, unless otherwise noted.

E(level) [†]	J π ‡	$T_{1/2}^{\#}$	Comments			
0@	0^{+}					
793.30 [@] 9	2+	3.19 ps 35	$T_{1/2}$: 1994Ch28 obtain 6.2 ps 21 by reanalyzing data of 1982De05.			
1454.21 ^{&} 11	2+					
1767.90 [@] 13	4+	1.73 ps 21	$T_{1/2}$: 1994Ch28 obtain 4.16 ps 14 by reanalyzing data of 1982De05.			
2056.71 ^{&} 14	3+					
2298.22 ^{&} 15						
2448.28 [°] 16	3-		Configuration: $(g_{9/2}, f_{5/2}^{-1})$ or $(g_{9/2}, p_{3/2}^{-1})$.			
2598.72 ^{&} 23	(4^{+})		J^{π} : 2 ⁺ ,4 ⁺ from 1145 $\gamma(\theta)$ indicating $\Delta J=0$ or 2; 4 favored by excitation function.			
2735.81 ^{&} 15	(5+)		J ^{π} : Δ J=1 from 968 $\gamma(\theta)$; J=5 from excitation function.			
2769.30 [°] 15	5-	9.5 ps 6	g=+1.6 2 (1989Ku11)			
			g-factor is an average for the feeding states, except for the 3488, 7^{-} state. J ^{π} : spin from $\gamma(\theta)$ and excitation function.			
2808.11 [@] 15	6+	1.04 ps 21	$T_{1/2}$: other: 2.6 ps 4 (1982BrZO).			
3041.52 ^d 16	5-					
3098.91 16	6+					
3157.61 ^{&} 18	(7^{+})		J ^{π} : 422 $\gamma(\theta)$ indicates $\Delta J=0$ or 2; 7 favored by excitation function.			
3270.81 22						
3279.42 ^{<i>a</i>} 17	6-					
3332.21 ⁰ 17	8+	157 ps 5	g=-0.15 7 (1981Br20)			
			g: from spin precession in polarized hyperfine fields of a tilted multi-foll target (1981Br20). Other: -0.1 2 (1989Ku11).			
			$T_{1/2}$: other: 170 ps 7 (1982BrZO), 162.9 ps 35 (1982De05 value reanalyzed by 1994Ch28).			
			Configuration: $\nu(g_{9/2}^{-2})_{8+} \otimes (g.s. \text{ of } {}^{86}\text{Sr core}).$			
3488.21 [°] 16	7-	4.4 ps 5	$g=+0.6\ 2\ (1989Ku11)$			
3650.42 ^{<i>d</i>} 16	7-					
3680.22 ^{<i>a</i>} 16	8+	3.33 ps 14	g=+0.9 I (1989Ku11)			
			Configuration: $\pi g_{9/2}^2 _{8+} \otimes {}^{2}$ Kr core.			

Continued on next page (footnotes at end of table)

76 Ge(12 C,4n γ), 81 Br(6 Li,3n γ) 1982De05 (continued)

⁸⁴Sr Levels (continued)

E(level) [†]	J π ‡	$T_{1/2}^{\#}$	Comments
3749.3 3			
4029.02 [@] 25	(8 ⁺)		J ^{π} : 1221 $\gamma(\theta)$ indicate 6 ⁺ ,8 ⁺ from $\Delta J=0$ or 2; 8 favored by excitation function.
4268.32 ^d 19	8-		
4370.9 ^{&} 3	(9+)		J ^{π} : 1213 $\gamma(\theta)$ indicate $\Delta J=(2)$; 9 favored by excitation function.
4447.92 ^b 18	10^{+}	2.22 ps 35	g=+0.2 l (1989Ku11)
			Configuration: $vg_{9/2}^{-2} _{8+} \otimes (2^+ \text{ of } {}^{86}\text{Sr core}).$
4534.42 ^{<i>a</i>} 19	10^{+}	1.66 ps <i>14</i>	$g=+0.8\ 2\ (1989Ku11)$
4636.42 ^c 18	9-	2.5 ps 4	$g=0.00 \ 4 \ (1989Ku11)$
			Configuration: $vg_{0/2}^{-2} \otimes (3^{-})$.
4746.0 3			
5444.82 ^c 20	11-	7.5 ps 10	
5653.53 ^a 20	12^{+}	0.83 ps 28	
6069.9 ^C 3	12^{-}		
6739.94 ^{<i>a</i>} 22	14^{+}		

[†] From least-squares fit to $E\gamma's$.

[±] As proposed by 1982De05 based on their $\gamma(\theta)$ and excitation function data and band associations.

[#] From recoil-distance Doppler shift technique in the reaction ${}^{76}\text{Ge}({}^{12}\text{C},4n\gamma)^{84}\text{Sr}$ at 60 MeV. See 1994Ch28 for a reanalysis of some of the lifetimes from 1982De05.

[@] Band(A): g.s. band.

& Band(B): quasi γ band.

^{*a*} Band(C): $\pi(g_{9/2}^2)_{8+} \otimes ({}^{82}\text{Kr core}).$ ^{*b*} Band(D): $\nu(g_{9/2}^{-2})_{8+} \otimes ({}^{86}\text{Sr core}).$

^c Band(E): Octupole band based on 3⁻.

^d Band(F): Band based on 5⁻.

$\gamma(^{84}{\rm Sr})$

All γ -ray placements from 1982De05 are based on $\gamma\gamma$ data using reactions: ⁸¹Br(⁶Li,3n γ) at 28 MeV and ⁷⁶Ge(¹²C,4n γ) at 58.3,60 MeV. See table II of 1982De05 for extensive details of $\gamma\gamma$ coincidence gates and observed γ rays. A_2 and A_4 coefficients are from ⁸¹Br(⁶Li,3n\gamma) at 28 MeV, unless otherwise noted.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
162.2 2	2.1 1	3650.42	7-	3488.21	7-		$A_2 = +0.41 \ I, \ A_4 = 0.00 \ I.$
237.9 1	1.1 <i>1</i>	3279.42	6-	3041.52	5-	D	$A_2 = -0.25 4, A_4 = +0.09 8.$
272.2 1	3.0 1	3041.52	5-	2769.30	5-	(D)	$A_2 = +0.25 6, A_4 = 0.00 1.$
							Mult.: $\gamma(\theta)$ consistent with $\Delta J=0$, dipole.
290.8 1	1.3 <i>I</i>	3098.91	6+	2808.11	6+		$A_2 = +0.23 \ 27, \ A_4 = 0.00 \ 1.$
321.0 <i>I</i>	0.6 1	2769.30	5-	2448.28	3-		
348.0 [@] 1	3.3 1	3680.22	8+	3332.21	8+	D+Q	A ₂ =-0.36 6, A ₄ =-0.06 3. Mult.: $\gamma(\theta)$ consistent with Δ J=0, D+Q.
371.0 1	0.5 1	3650.42	7-	3279.42	6-	D	$A_2 = -0.53\ 24, A_4 = +0.01\ 2.$
421.8 <i>1</i>	2.8 1	3157.61	(7^{+})	2735.81	(5 ⁺)	Q	$A_2 = +0.27 5, A_4 = -0.08 4.$
462.7 [#] 2	≈1.0 [#]	3270.81		2808.11	6+		I_{γ} : 1.0 1 (1982De05).
510.1 [#] 5	≈6.4 [#]	3279.42	6-	2769.30	5-		I_{γ} : 6.4 1 (1982De05).
524.1 <i>I</i>	13.6 <i>3</i>	3332.21	8+	2808.11	6+	E2	$\dot{A}_2 = +0.32$ 2, $A_4 = -0.07$ 1.

76 Ge(12 C,4n γ), 81 Br(6 Li,3n γ) 1982De05 (continued)

$\gamma(^{84}Sr)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
551.5 2	0.9 1	3650.42	7-	3098.91	6+	D	$A_2 = -0.36$ 7, $A_4 = +0.04$ 1.
581.3 2	0.5 1	3680.22	8+	3098.91	6+		2
593.3 2	0.8 1	3041.52	5-	2448.28	3-		
602.5 1	7.1 <i>3</i>	2056.71	3+	1454.21	2^{+}	D+Q	$A_2 = +0.18 \ 3, \ A_4 = +0.05 \ 1.$
608.9 1	2.3 1	3650.42	7^{-}	3041.52	5-		
625.1 [@] 2	1.1 <i>I</i>	6069.9	12-	5444.82	11^{-}	D	$A_2 = -0.335, A_4 = +0.016.$
650.4 2	1.3 <i>I</i>	3749.3		3098.91	6+	D+Q	$A_2 = -0.44 5, A_4 = +0.16 4.$
660.9 1	10.6 3	1454.21	2+	793.30	2+		$A_2 = +0.14 \ 3, \ A_4 = 0.00 \ 1.$
679.1 [#] 2	≈2.6 [#]	2735.81	(5 ⁺)	2056.71	3+		I _γ : 2.6 3 (1982De05).
680.1 ^{#@} 2	≈3.9 [#]	3488.21	7^{-}	2808.11	6+	D	I_{γ} : 3.9 4 (1982De05).
							$A_2 = -0.31 4, A_4 = +0.16 5.$
718.9 <i>I</i>	9.0 5	3488.21	7-	2769.30	5-	E2	$A_2 = +0.31 \ 3, \ A_4 = -0.05 \ 1.$
780.1 2	1.3 1	4268.32	8-	3488.21	7-		
793.3 1	100 5	793.30	2+	0	0^{+}	E2	$A_2 = +0.23 I, A_4 = -0.05 I.$
808.4 1	2.3 2	5444.82	11-	4636.42	9- 2+	E2	$A_2 = +0.38 \ 8, \ A_4 = -0.19 \ 8.$
844.0 1	5.1 2	2298.22	10+	1454.21	2'		
854.2 1	7.7.2	4534.42	10'	3680.22	8'	E2 E2	$A_2 = +0.30$ 3, $A_4 = -0.05$ 1.
8/2.1 1	11.3 3	3680.22	8'	2808.11	6'	E2	$A_2 = +0.333$, $A_4 = -0.051$.
881.1 2	1.2 I	3050.42	/ (5 ⁺)	2/69.30	Э 4+	(\mathbf{Q})	$A_2 = +0.12$ 2, $A_4 = -0.10$ 0.
907.91	2.2 I 77 4	2755.81	(3^{+})	702.20	4 · 2+	D+Q E2	$A_2 = +0.387, A_4 = +0.072.$
974.01	271	1707.90	4 Q-	3270 12	2 6 ⁻	0	$A_2 = +0.30$ 7, $A_4 = -0.07$ 7.
994.0.3	2.71	4208.32 2448-28	3-	1454 21	2+	D D	$A_2 = +0.307, A_4 = -0.155.$ $A_2 = -0.255, A_4 = +0.005.3$
996.9.3	0.7.1	5444 82	11-	4447 92	$\frac{2}{10^{+}}$	D	$n_2 = 0.255, n_4 = 10.0055.$
1001.4 1	21.7 19	2769.30	5-	1767.90	4+	D	$A_2 = -0.18 I_1 A_4 = +0.012 I_1$
1001111	=117 17	2/0/100	U	1101120	•	2	δ : 0 from 1001 $\gamma(\theta)$ as expected for E1.
1040.2 1	42.6 9	2808.11	6+	1767.90	4+	E2	$A_2 = +0.27 \ 2, \ A_4 = -0.06 \ 1.$
1086.4 [@] 1	2.6 2	6739.94	14^{+}	5653.53	12^{+}	Q	$A_2 = +0.16 \ 3, \ A_4 = -0.06 \ 1.$
1115.7 <i>1</i>	6.7 3	4447.92	10^{+}	3332.21	8+	E2	$A_2 = +0.27 4, A_4 = -0.09 2.$
1119.1 [@] 1	2.4 1	5653.53	12^{+}	4534.42	10^{+}	E2	$A_2 = +0.33 2, A_4 = -0.14 2.$
1144.5 2	1.5 2	2598.72	(4^{+})	1454.21	2^{+}		$A_2 = +0.15 \ I3, \ A_4 = -0.05 \ 5.$
1148.2 1	4.1 2	4636.42	9-	3488.21	7-	E2	$A_2 = +0.30 6, A_4 = -0.08 4.$
1205.6 [@] 2	0.8 1	5653.53	12^{+}	4447.92	10^{+}	E2	$A_2 = +0.26 6, A_4 = -0.03 2.$
1213.3 2	1.0 <i>I</i>	4370.9	(9 ⁺)	3157.61	(7^{+})	(Q)	$A_2 = +0.33$ 7, $A_4 = +0.09$ 10.
1220.9 2	1.6 8	4029.02	(8+)	2808.11	6+	Q	$A_2 = +0.20 9, A_4 = -0.16 6.$
1263.4 5	0.8 1	2056.71	3+	793.30	2+	D	$A_2 = -0.47 \ 28, \ A_4 = +0.09 \ 11.$
1331.0 2	3.5 2	3098.91	6+	1767.90	4+	Q	$A_2 = +0.36 \ I \ A_4 = -0.06 \ I.$
1413.8 2	1.1 1	4746.0		3332.21	8+		
1454.2 2	1.4 1	1454.21	2+	0	0^{+}		
1502.9 <i>3</i>	0.3 1	3270.81		1767.90	4+		

[†] From ⁸¹Br(⁶Li, $3n\gamma$) at 28 MeV.

[‡] From $\gamma(\theta)$ data in ⁸¹Br(⁶Li,3n γ) at 28 MeV and RUL where level lifetimes are known. The assignments mult=D, Q or D+Q are as implied by $\gamma(\theta)$ coefficients and correspond to $\Delta J=1$ for for D, D+Q and $\Delta J=2$ for Q. [#] Unresolved doublet, intensity is an approximate estimate. [@] A₂ and A₄ are from $\gamma(\theta)$ In ⁷⁶Ge(¹²C,4n γ)⁸⁴Sr at 60 MeV.

76 Ge(12 C,4n γ), 81 Br(6 Li,3n γ) 1982De05

 $^{84}_{38}{
m Sr}_{46}$

$\frac{{}^{76}\text{Ge}({}^{12}\text{C,4n}\gamma),{}^{81}\text{Br}({}^{6}\text{Li,3n}\gamma) \qquad 1982\text{De05 (continued)}}{}$

