## <sup>85</sup>As β<sup>-</sup>n decay (2.021 s) 1993Ru01,1975Kr08,1979Kr03

|                 | History                                   |                     |                        |
|-----------------|-------------------------------------------|---------------------|------------------------|
| Туре            | Author                                    | Citation            | Literature Cutoff Date |
| Full Evaluation | A. A. Sonzogni, M. Fadil, and B. Pfeiffer | NDS 110,2815 (2009) | 30-Sep-2009            |

Parent: <sup>85</sup>As: E=0;  $J^{\pi} = (3/2^{-})$ ;  $T_{1/2} = 2.021$  s *12*;  $Q(\beta^{-}n) = 4687$  *4*;  $\%\beta^{-}n$  decay=62.6 *13* <sup>85</sup>As- $Q(\beta^{-}n)$ : From 2012Wa38.

<sup>85</sup>As- $J^{\pi}$ ,  $T_{1/2}$ : From <sup>85</sup>As Adopted Levels. A recent  $T_{1/2}$  measurement of 2.08 s *14* (2013Ma22) agrees with the Adopted value, but much less precise.

<sup>85</sup>As-%β<sup>-</sup>n decay: %β<sup>-</sup>n=62.6 13; weighted average of 63.1 10 (2014Ag12) and 59.4 24 (1993Ru01). Other values: 39 5 (1991Om01), 58 10 (1991Kr15). Measurements of 23 3 (1973Kr06) and 22 8 (1978Cr03) were based on outdated fission yields.

Additional information 1.

1993Ru01: measured half-life and delayed neutron emission probability from mass-separated fission produced activity.

1975Kr08: fast chemical separation of fission products. <sup>3</sup>He counters. Ge(Li) detectors. Neutron spectra measured by 1979Kr03.
1979Kr03: fast chemical separation of fission products. <sup>3</sup>He counters, FWHM=12 keV for thermal neutrons and E=20 keV at 1 MeV. Ge(Li) detectors.

Other measurements: 1991Kr15, 1991Om01, 1991Om02, 1978Cr03, 1973Kr06, 1968To18, 1968To19, 1967De01, 1966To02. Analysis and evaluation of  $\beta\beta$ <sup>-</sup>n data: 2002Pf04, 1993Ru01, 1989BrZI, 1982Ru01, 1977Ru10, 1975Iz03.

## <sup>84</sup>Se Levels

| E(level) <sup>†</sup> | $J^{\pi}$ |
|-----------------------|-----------|
| 0.0                   | $0^{+}$   |
| 1455.11 20            | $(2^{+})$ |
| 2122.2 3              | $(4^{+})$ |
| 2699.7 <i>3</i>       |           |
| 3298.8 3              |           |

<sup>†</sup> Deduced from  $E\gamma$ .

## $\gamma(^{84}\text{Se})$

Iy normalization: From feeding to g.s. equal to 35% 7 in 1979Kr03.

| Eγ                    | $I_{\gamma}^{\ddagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ |
|-----------------------|-------------------------|---------------|----------------------|---------|----------------------|
| 577.5 2               | 6.0 9                   | 2699.7        |                      | 2122.2  | $(4^{+})$            |
| 667.1 2               | 42.2 35                 | 2122.2        | $(4^{+})$            | 1455.11 | $(2^{+})$            |
| 1244.6 2              | 4.0 7                   | 2699.7        |                      | 1455.11 | $(2^{+})$            |
| 1455.1 2              | 100                     | 1455.11       | $(2^{+})$            | 0.0     | $0^{+}$              |
| 1843.7 <sup>†</sup> 2 | 3.1 4                   | 3298.8        |                      | 1455.11 | (2+)                 |

<sup>†</sup> Tentative placement by 1975Kr08 was confirmed in later  $\beta^-$  decay study.

 $\ddagger$  For absolute intensity per 100 decays, multiply by 0.41 5.

Delayed Neutrons (<sup>84</sup>Se)

Measured delayed-neutron spectra: 1981ShZS, 1979Kr03, 1976Kr18 (also 1974Fr09), 1976Ru01, 1974Cr06, 1974Sh18, 1973Kr06, 1968To18, 1968To19, 1967De01, 1966To02.

Additional information 2.

Agreement of neutron intensities measured by 1979Kr03 with neutron feedings deduced from I $\gamma$  (1975Kr08) is poor. Theory: 1979Pr03.

|                   |                      |                         |                                                  | decay (2.02       | 21 s) 19             | 93Ru01,197              | 5Kr08,1979Kr03 (continued)        |
|-------------------|----------------------|-------------------------|--------------------------------------------------|-------------------|----------------------|-------------------------|-----------------------------------|
|                   |                      |                         | Delayed Neutrons ( <sup>84</sup> Se) (continued) |                   |                      |                         |                                   |
| E(n) <sup>‡</sup> | E( <sup>84</sup> Se) | I(n) <sup>#@&amp;</sup> | E( <sup>85</sup> Se) <sup>†</sup>                | E(n) <sup>‡</sup> | E( <sup>84</sup> Se) | I(n) <sup>#@&amp;</sup> | E( <sup>85</sup> Se) <sup>†</sup> |
|                   | 0.0                  | <1                      | 6931                                             | 245 6             | 3298.8               | 5                       | 8090                              |
|                   | 0.0                  | <1                      | 7160                                             | 271 2             | 2122.2               | 15                      | 6931                              |
|                   | 0.0                  | <1                      | 7187                                             | 495 <i>3</i>      | 2122.2               | 100                     | 7160                              |
|                   | 0.0                  | <1                      | 7377                                             | 516 <i>3</i>      | 2122.2               | 87                      | 7187                              |
|                   | 0.0                  | < 0.1                   | 8090                                             | 708 <i>3</i>      | 2122.2               | 51                      | 7377                              |
|                   | 1455.11              | <5                      | 7377                                             | 925 4             | 1455.11              | 73                      | 6931                              |
|                   | 1455.11              | <1                      | 8090                                             | 1154 7            | 1455.11              | 36                      | 7160                              |
|                   | 2699.7               | <5                      | 8090                                             | 1187 8            | 1455.11              | 34                      | 7187                              |
| 56 <i>1</i>       | 1455.11              | 16                      | 6043                                             | 1420 7            | 2122.2               | 40                      | 8090                              |
| 140 <i>3</i>      | 2699.7               | 41                      | 7377                                             | 1506 11           | 0.0                  | 20                      | 6043                              |

<sup>†</sup> Calculated taking S(n)(<sup>85</sup>Se)=4537 *3* (2012Wa38). <sup>‡</sup> Values quoted are in lab coordinates.

<sup>#</sup> Relative neutron intensities. <sup>@</sup> I(n) deduced from I $\gamma$  are: 6.7 4 (g.s.), 8.3 14 (1455 level), 5.9 11 (2122 level), 1.6 3 (2700 level), and 0.51 10 (3299 level). <sup>&</sup> For absolute intensity per 100 decays, multiply by 0.626 13.

## <sup>85</sup>As β<sup>-</sup>n decay (2.021 s) 1993Ru01,1975Kr08,1979Kr03

