²³⁸U(⁸²Se,⁸⁴Seγ) 2015Li42

-		History			
Type	Author	Citation	Literature Cutoff Date		
Update	Balraj Singh	ENSDF			

2015Li42: States in ⁸⁴Se populated through 2n-transfer reaction. $E(^{82}Se)=577$ MeV provided by Tandem-XTU and ALPI superconducting LINAC at INFN-Legnaro. Target=2 mg/cm² thick evaporated on 1.2 mg/cm² thick Ta backing facing the beam. Measured E γ , I γ , (⁸⁴Se) γ -coin, level lifetimes by recoil-distance Doppler shift (RDDS) using Cologne Plunger device, in which a ⁹³Nb degrader foil of 4.1 mg/cm² thickness was mounted downstream for slowing down the projectile-like recoils. PRISMA magnetic spectrometer was used for mass separation using B ρ - Δ E-TOF method, and position information of recoils measured by micro-channel plate (MCP) detector and multiwire parallel-plate avalanche counters (MWPPAC). The AGATA demonstrator array of five triple clusters of 36-fold segmented HPGe detectors was used for the detection of Doppler-corrected γ -rays. Level lifetimes were extracted from (⁸⁴Se) γ -coin spectra generated with a condition on total kinetic energy loss (TKEL) of recoils, the latter generated from event-by-event analysis using relativistic two-body kinematics. Comparison with large-scale shell model calculations using several different effective interactions.

⁸⁴Se Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	0^{+}		
1454.66 10	2+	0.42 ps 6	$T_{1/2}$: from B(E2) \uparrow =0.105 <i>15</i> in 2010Ga14. The experiment in 2015Li42 is less sensitive to mean lifetimes of less than 1 ps. Upper limit of 0.7 ps half-life is suggested by 2015Li42.
2121.65 12	4+	20.2 ps +41-26	
2984.85 16	2+		J^{π} : from ⁸⁴ Se Adopted Levels.
3370.53 18	6+	8.2 ps +17-39	$T_{1/2}$: from method 2, as described for ⁸⁶ Se in 2015Li42; the lower uncertainties of 1.8 (stat) and 3.4 (syst) are combined in quadrature by compiler. Other $T_{1/2}$ =8.7 ps +31-44 from authors' method 1, same as used for half-life of the 4 ⁺ state in ⁸⁶ Se.
3408.71? 16			
3439.60 16			
3536.95 21	5+		
3701.65 24	6+		A 164.18 keV 21 γ with a branching of 29% from this level and known from previous experimental work is not discussed by 2015Li42.
4637.5?			-

[†] From $E\gamma$ values.

[‡] From 2015Li42 unless otherwise stated.

[#] From RDDS, plunger method (2015Li42), unless otherwise stated.

$\gamma(^{84}Se)$

E_{γ}^{\dagger}	Iγ	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
666.99 7	100	2121.65	4+	1454.66 2+	E2	B(E2)↓=0.0219 +34-38 (2015Li42)
						B(E2)(W.u.) = 10.0 + 16 - 17
1248.88 <i>13</i>	13 <i>3</i>	3370.53	6+	2121.65 4+	[E2]	$B(E2)\downarrow = 0.0023 + 18 - 4 (2015Li42)$
						B(E2)(W.u.)=1.1 + 8-2
						B(E2) value from method 2 in 2015Li42. B(E2)= $0.0022 + 22-6$ from authors' method 1.
1267	≈2	4637.5?		3370.53 6+		Weak peak in γ spectrum of 2015Li42. This peak corresponds to 1270 γ feeding the first 6 ⁺ state, as reported by 2013DrZY or Doppler-shifted peak of 1287 γ from 3408 level feeding the first 4 ⁺ state, or a mixture of the contribution from both.
1287.06 [‡] 10 1317.95 10 1415.30 17	52 <i>3</i>	3408.71? 3439.60 3536.95	5+	$\begin{array}{cccc} 2121.65 & 4^+ \\ 2121.65 & 4^+ \\ 2121.65 & 4^+ \end{array}$		See comment for 1267γ from 4637 level. An unidentified 1317 peak shown in Figure 6 of 2015Li42.

Continued on next page (footnotes at end of table)

238 U(82 Se, 84 Se γ) 2015Li42 (continued)

$\gamma(^{84}Se)$ (continued)

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
1454.66 10		1454.66	2+	0.0	0^{+}	E2	$B(E2)\downarrow=0.0210 \ 30 \ (2010Ga14) \\B(E2)(Wu)=9.6 \ 14$
1530.19 <i>14</i> 1580.00 <i>21</i>	27 3	2984.85 3701.65	$2^+_{6^+}$	1454.66 2121.65	2+ 4+		An unidentified 1530 peak shown in Figure 6 of 2015Li42.

[†] From ⁸⁴Se Adopted dataset, unless otherwise stated.
 [‡] Placement of transition in the level scheme is uncertain.

 $^{84}_{34}{
m Se}_{50}$