${ }_{34}^{84} \mathrm{Se}_{50}-1$
$\underline{{ }^{238} \mathbf{U}\left({ }^{82} \mathbf{S e},{ }^{84} \mathbf{S e} \gamma\right) \quad \text { 2015Li42 }}$

$\frac{\text { Type }}{\text { Update }} \frac{\text { Author }}{\text { Balraj Singh }}$| History |
| :--- |
| Citation |\quad Literature Cutoff Date

2015Li42: States in ${ }^{84}$ Se populated through 2 n-transfer reaction. $\mathrm{E}\left({ }^{82} \mathrm{Se}\right)=577 \mathrm{MeV}$ provided by Tandem-XTU and ALPI superconducting LINAC at INFN-Legnaro. Target $=2 \mathrm{mg} / \mathrm{cm}^{2}$ thick evaporated on $1.2 \mathrm{mg} / \mathrm{cm}^{2}$ thick Ta backing facing the beam. Measured $\mathrm{E} \gamma, \mathrm{I} \gamma,\left({ }^{84} \mathrm{Se}\right) \gamma$-coin, level lifetimes by recoil-distance Doppler shift (RDDS) using Cologne Plunger device, in which a ${ }^{93} \mathrm{Nb}$ degrader foil of $4.1 \mathrm{mg} / \mathrm{cm}^{2}$ thickness was mounted downstream for slowing down the projectile-like recoils. PRISMA magnetic spectrometer was used for mass separation using $\mathrm{B} \rho-\Delta \mathrm{E}-\mathrm{TOF}$ method, and position information of recoils measured by micro-channel plate (MCP) detector and multiwire parallel-plate avalanche counters (MWPPAC). The AGATA demonstrator array of five triple clusters of 36 -fold segmented HPGe detectors was used for the detection of Doppler-corrected γ-rays. Level lifetimes were extracted from (${ }^{84} \mathrm{Se}$) γ-coin spectra generated with a condition on total kinetic energy loss (TKEL) of recoils, the latter generated from event-by-event analysis using relativistic two-body kinematics. Comparison with large-scale shell model calculations using several different effective interactions.
${ }^{84}$ Se Levels

$\mathrm{E}(\text { level })^{\dagger}$	$\mathrm{J}^{\pi \ddagger}$	$\mathrm{T}_{1 / 2}{ }^{\text {\# }}$	Comments
0.0	0^{+}		
1454.6610	2^{+}	0.42 ps 6	$\mathrm{T}_{1 / 2}$: from $\mathrm{B}(\mathrm{E} 2) \uparrow=0.10515$ in 2010 Ga 14 . The experiment in 2015Li42 is less sensitive to mean lifetimes of less than 1 ps. Upper limit of 0.7 ps half-life is suggested by 2015Li42.
2121.6512	4^{+}	$20.2 \mathrm{ps}+41-26$	
2984.8516	2^{+}		J^{π} : from ${ }^{84} \mathrm{Se}$ Adopted Levels.
3370.5318	6^{+}	$8.2 \mathrm{ps}+17-39$	$\mathrm{T}_{1 / 2}$: from method 2, as described for ${ }^{86} \mathrm{Se}$ in 2015Li42; the lower uncertainties of 1.8 (stat) and 3.4 (syst) are combined in quadrature by compiler. Other $\mathrm{T}_{1 / 2}=8.7 \mathrm{ps}+31-44$ from authors' method 1 , same as used for half-life of the 4^{+}state in ${ }^{86} \mathrm{Se}$.

3408.71? 16
3439.6016
$\begin{array}{ll}3536.9521 & 5^{+} \\ 3701.6524 & 6^{+}\end{array}$
A $164.18 \mathrm{keV} 21 \gamma$ with a branching of 29% from this level and known from previous experimental work is not discussed by 2015Li42.

4637.5?

${ }^{\dagger}$ From E γ values.

* From 2015Li42 unless otherwise stated.
\# From RDDS, plunger method (2015Li42), unless otherwise stated.

$\mathrm{E}_{\gamma}{ }^{\dagger}$	I_{γ}	$\mathrm{E}_{i}($ level $)$	J_{i}^{π}	E_{f}	J_{f}^{π}	Mult. ${ }^{\dagger}$	Comments
666.997	100	2121.65	4^{+}	1454.66	2^{+}	E2	$\mathrm{B}(\mathrm{E} 2) \downarrow=0.0219+34-38(2015 \mathrm{Li} 42)$
							$\mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u})=.10.0+16-17$
1248.8813	133	3370.53	6^{+}	2121.65	4^{+}	[E2]	$\mathrm{B}(\mathrm{E} 2) \downarrow=0.0023+18-4(2015 \mathrm{Li} 42)$
							$\mathrm{B}(\mathrm{E} 2)(\mathrm{W} . \mathrm{u})=.1.1+8-2$
							$\mathrm{B}(\mathrm{E} 2)$ value from method 2 in 2015Li42. $\mathrm{B}(\mathrm{E} 2)=0.0022+22-6$ from authors' method 1.
1267	≈ 2	4637.5?		3370.53	6^{+}		Weak peak in γ spectrum of 2015Li42. This peak corresponds to 1270γ feeding the first 6^{+}state, as reported by 2013DrZY or Doppler-shifted peak of 1287γ from 3408 level feeding the first 4^{+}state, or a mixture of the contribution from both.
$1287.06^{\ddagger} 10$		3408.71?		2121.65	4^{+}		See comment for 1267γ from 4637 level.
1317.9510		3439.60		2121.65	4^{+}		An unidentified 1317 peak shown in Figure 6 of 2015Li42.
1415.3017	523	3536.95	5^{+}	2121.65			

${ }^{\dagger}$ From ${ }^{84} \mathrm{Se}$ Adopted dataset, unless otherwise stated.
\# Placement of transition in the level scheme is uncertain.

