		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 110,2815 (2009)	30-Sep-2009
$Q(\beta^{-})=890.6\ 24;\ S(n)=8760\ 4;\ S(p)=7057.9\ 2$	3; $Q(\alpha) = -6295 \ 3$	2012Wa38	

Note: Current evaluation has used the following Q record 896 3 8754 4 7052 3 -6289 3 2009AuZZ. Values in 2003Au03 are: $Q(\beta^-)=894$ 3, S(n)=8747 7, S(p)=7057.3 23, $Q(\alpha)=-6285$ 3. ⁸⁴**Rb evaluated by F.G. Kondev**.

Atomic mass measurements: 1994Ot01 and 1992Bo31 (Penning-trap system). Re-evaluation of atomic mass: 2007Ke09.

The level schemes presented in the ${}^{76}\text{Ge}({}^{11}\text{B},3n\gamma)$ (2002Sc35) and ${}^{70}\text{Zn}({}^{18}\text{O},p3n\gamma)$ (1999Ha37) datasets are different at high spin. Above the (8⁺) level at 703 keV, the evaluator gives preference to the ${}^{76}\text{Ge}({}^{11}\text{B},3n\gamma)$ (2002Sc35) data, due to the utilization of state-of-the art equipment in this work and the better quality of data. The reader should consult both datasets for details.

⁸⁴Rb Levels

Cross Reference (XREF) Flags

				A ⁸⁴ Rb IT decay D ⁸¹ Br(α ,n γ) B ⁷⁰ Zn(¹⁸ O,p3n γ) E ⁸⁵ Rb(p,d) C ⁷⁶ Ge(¹¹ B,3n γ) F ⁸⁶ Sr(d, α)
E(level) [†]	J π ‡	T _{1/2} #	XREF	Comments
0 ^b	2-	32.82 d 7	ABCDEF	[%] β ⁻ =3.9 20; %ε+%β ⁺ =96.1 20 μ=-1.324116 2 (1962Kh03,1989Ra17) Q=-0.015 35 (1981Th04,1989Ra17) <r<sup>2>1/2=4.1992 fm 22 (2004An14 evaluation). Measured Δ<r<sup>2>(⁸⁴Rb)=⁸⁷Rb)=0.0078 fm² 32 (1981Th04). %β⁻: deduced by the evaluator from Iβ⁻(g.s.)/Iβ⁺(g.s.)=0.29 15 (an estimate by 1958Be81 with a 50% uncertainty assumed by the evaluator) and Iβ⁺(g.s.)=13.6% 9, calculated by the evaluator using the following information: Iβ⁺(882)/Iβ⁺(g.s.)=0.97 5 (average of 0.92 and 1.008 12 as deduced from β⁺ spectra (1971Bo01) and γ[±]γ[±] and γ[±]γ[±]882γ triple coincidences (1971Ge10), respectively), ε(g.s.)/Iβ⁺(g.s.)=1.026 12 (from theory, deduced using Q(ε)=2686 keV 3 (2009AuZZ)), and ε(882)/Iβ⁺(882)=4.43 18 (1970Go44). %ε+%β⁺=100 – %β⁻. J^π: from atomic beam (1956Ho52); L(p,d)=4 (J^π=5/2⁻ for the target); γγ(θ) in ⁸⁴Rb IT decay (1958Co67). T_{1/2}: weighted average of 32.77 d 14 (1976Gi14) and 32.84 d 8 (2000Hu20). Both work used Ge detectors to detect 881.6γ as a function of time and followed the decay for a time period of approximately three half-lives. Other: 33.2 d 4 (1976Bo19), 34.5 d 2 (1971Ge10), 33.0 d 2 (1955We40). μ: from atomic beam (1962Kh03). Others: -1.3246 16 using the high-resolution LASER spectroscopy on atomic beam technique (1981Th04), -1.296 11 using the optical double resonance technique (1973Ac02), -1.33 2 (atomic beam,1957Hu75). See also 2005St24 compilation. Q: using the high-resolution LASER spectroscopy on atomic beam technique (1981Th04). Other: +0.005 1 using the optical double resonance technique (1981Th04). Other: +0.005 1 using the optical double resonance technique (1981Th04). Other: +0.005 1 using the optical double resonance technique (1981Th04). Other: +0.005 1 using the optical double resonance technique (1981Th04). Other: +0.005 1 using the optical double resonance technique</r<sup></r<sup>
248.06 ^c 8	3-	0.31 ns 6	ABCDEF	(1973AC02). See also 20053124 and 1989Ka17 compliations. J^{π} : 248.02 γ E2(+M1) to 2 ⁻ ; 215.61 γ M3+E4 from 6 ⁻ ; $\gamma\gamma(\theta)$ in ⁸⁴ Rb IT decay (1958Co67).
463.59 ^b 8	6-	20.26 min 4	ABCDef	T _{1/2} : From 216ce-248 γ (t) centroid shift in ⁸⁴ Rb IT decay (1968Se02). %IT=100

Continued on next page (footnotes at end of table)

⁸⁴Rb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				μ =+0.2129331 10 (1981Th04); Q=0.57 27 (1981Th04)
				XREF: e(468)f(470).
				Measured $\Delta < r^2 > ({^{84}}Rb - {^{87m}}Rb) = 0.004 \text{ fm}^2 16$ (1981Th04).
				A small $\varepsilon + \beta^+$ branch ($\%\varepsilon + \%\beta^+ \le 0.0012$) seems possible, but not definitely
				established (1979Er03, see ⁸⁴ Rb IT decay).
				J ^{π} : From atomic beam (1978Ek04); L(p,d)=4 (J ^{π} =5/2 ⁻ for the target); $\gamma\gamma(\theta)$
				in ⁸⁴ Rb IT decay (1958Co67).
				$T_{1/2}$: From 1982Gr07; the uncertainty is statistical only. Others: 20.6 min 8
				(19/05107), 21.2 min 3 (19/0B019), 20.0 min 3 (19/0Pa09), 20.5 min 2 (1060Kr05) and 10.8 min 7 (1058Co67)
				(1705 Kli05), and 17.8 min 7 (1758 coor).
				(1981Th04). See also 2005St24 and 1989Ra17 compilations.
466.64 [°] 16	5-	9 ns 2	BCDef	XREF: e(468)f(470).
				218.3 γ E2 to 3 ⁻ ; (3.4 γ) to 6 ⁻ .
				T _{1/2} : From γ (t) in ⁸¹ Br(α ,n γ), but the gating transitions were not provided
				by the authors (1991Do04).
472.40 ^c 12	(4 ⁻)		BCDef	XREF: $e(468)f(470)$.
542 289 12	(5+)	11		$J^{*}: 224.3\gamma$ to 3 .
545.28 12	(5^{-})	11 ns 1	BCD F	AKEF: $F(534)$. I^{π} : 70.7 μ to (A^{-}) : 76.4 μ to 5 ⁻ : 79.8 μ to 6 ⁻ : comparison with $\pi - \pm$ sequence
				in several odd-odd Br nuclides.
				$T_{1/2}$: From $\gamma(t)$ in ${}^{81}\text{Br}(\alpha,n\gamma)$ (1991Do04).
				Possible configuration= $((\pi g_{9/2})(\nu g_{9/2})).$
564 ^{&} 3	$(2,3,4)^+$		Е	J^{π} : L(p,d)=1 ($J^{\pi}=5/2^{-}$ for the target).
572.9 ^a 6	(6 ⁺)		D	J^{π} : 29.2 γ (M1) to (5 ⁺); 110 γ to 6 ⁻ ; band structure.
602.1 6	4 ⁻ ,5,6		BDF	J^{π} : 135.5 γ to 5 ⁻ ; 139.0 γ to 6 ⁻ ; the weak population of this state in
				⁸¹ Br(α ,n γ) and the non-observation in ⁷⁶ Ge(¹¹ B,3n γ) would argue against
61264	$(4.5)^{-}$		DDE	$J^{n} = /^{-}$. \overline{M} , \overline{L} ($\pi = \frac{1}{2}/2^{-}$ for the torest), 141 2.4 to (A^{-}) , 146 0.4 to (5^{-}) , 150 4.4
015.0 4	(4,3)		D DL	J. $L(p,u) = 4$ (J = 5/2 for the target), 141.57 to (4), 140.57 to (5), 150.47 to 6 ⁻ : the weak population of this state in ⁸¹ Br(a pa) and the
				non observation in ${}^{76}Ge({}^{11}B 3nd)$ would argue against $I^{\pi} = 6^{-1}$
619.7 ^{<i>a</i>} 4	(7^{+})		BCD	J^{π} : 46.6 γ (M1) to (6 ⁺): band structure.
677 99 ^b 13	(7^{-})		CDEE	I^{π} : L (p d)=4 (I^{π} =5/2 ⁻ for the target): 214 4 γ (M1) to 6 ⁻
702.8^{a} 4	(8^+)		BCD	J^{π} : 83.1 γ (M1) to (7 ⁺); band structure.
718 <mark>&</mark> 8			Е	
768 & 5	2-3-		F	I^{π} . L (p d)=0+2 (I^{π} =5/2 ⁻ for the target) and the assumption that the (p d) neak
100 2	2,5		-	corresponds to a single level.
797 <mark>&</mark> 6			Е	1 0
832 ^{&} 3	$(2.3.4)^+$		Е	J^{π} : L(p,d)=1 ($J^{\pi}=5/2^{-}$ for the target).
890 ^{&} 5	$(2.3.4)^+$		Е	J^{π} : L(p,d)=1 ($J^{\pi}=5/2^{-}$ for the target).
929 & 4	$(2.3.4)^+$		Е	J^{π} : L(p,d)=1 ($J^{\pi}=5/2^{-}$ for the target).
941 [@] 7	$(2,3,4)^{-}$		F	I^{π} : $L(d, \alpha) = 3$ ($I^{\pi} = 0^+$ for the target).
957 <mark>&</mark> 8	(_,_,_,		E	
1007& 6	$(1)^{+}$		-	XRFF: F(990)
1007 0	(1)			J^{π} : L(d, α)=0 (J^{π} =0 ⁺ for the target).
1066 [@] 7	$(1^+, 2^+, 3^+)$		F	J^{π} : L(d, α)=(2) (J^{π} =0 ⁺ for the target).
1136 ^{&} 5	$(2,3,4)^+$		Е	J^{π} : L(p,d)=1 ($J^{\pi}=5/2^{-}$ for the target).
1156.9 8	$(6^+, 7, 8^+)$		Def	XREF: e(1165)f(1160).
				J^{π} : 453.8 γ to (8 ⁺); 584.2 γ to (6 ⁺).
1167.1 12			B ef	XREF: e(1165)f(1160).
1218 ^{^w} 7	(1^{+})		F	J^{π} : L(d, α)=(0) (J^{π} =0 ⁺ for the target).

Continued on next page (footnotes at end of table)

⁸⁴Rb Levels (continued)

E(level) [†]	J ^π ‡	T _{1/2} #	XREF	Comments
1286 ^{&} 3	$(2.3.4)^+$		Е	J^{π} : L(p,d)=1 ($J^{\pi}=5/2^{-}$ for the target).
1333.6 ^{<i>a</i>} 4	(2,0,1) (9^+)	0.59 ps 10	BCDE	XREF: E(1335).
	(-)	1		J^{π} : 630.9 γ M1 to (8 ⁺).
1397.8 ^d 3	(8^{-})		С	J^{π} : 719.7 γ (M1) to 7 ⁻ .
1662.3 4	(8-)		С	J^{π} : 959.0 γ to (8 ⁺); 984.8 γ to (7 ⁻).
1745.1 10	(7^{-})		С	J^{π} : 1278.2 γ to 5 ⁻ .
1757.9 ^a 4	(10^{+})	1.11 ps <i>14</i>	BCD	J^{π} : 424.4 γ M1 to (9 ⁺); 1054.6 γ E2 to (8 ⁺).
1871.7 6	(9 ⁺)	*	BC	J^{π} : 1169.0 γ to (8 ⁺); assignment is tentative.
2068.0 ^d 5	(9 ⁻)		С	J^{π} : 1390.0y to (7) ⁻ ; assignment is tentative.
2428.7 4	(10^{+})		С	J^{π} : 1095.3 γ (M1) to (9 ⁺).
2461.8 4	(9 ⁻)		С	J^{π} : 1063.8 γ (M1) to (8) ⁻ .
2469.3 6	(10^{-})		С	J^{π} : 401.3 γ to (9 ⁻); assignment is tentative.
2476.6 ^a 4	(11^{+})	0.194 ps 21	С	J^{π} : 718.8 γ M1 to (10 ⁺).
2710.6 4	(10^{-})		BC	J^{π} : 1376.5 γ (E1) to (9 ⁺).
2917.9 ^e 5	(11^{+})		С	J ^{π} : 489.3 γ to (10 ⁺); assignment is tentative.
2936.8 4	(10^{-})		С	J^{π} : 474.9 γ (M1) to (9 ⁻); 1181.0 γ to (10 ⁺); 1274.0 γ to (8 ⁻).
2972.4 5	(9 ⁻)		С	J ^{π} : 1227.1 γ to (7 ⁻); assignment is tentative.
3028.2 4	(10^{-})		С	J^{π} : 1365.4 γ to (8 ⁻); assignment is tentative.
3107.9 5	(10^{-})		C	J^{π} : 135.5 γ to (9 ⁻), 1445.5 γ to (8 ⁻), 1771.9 γ to (9 ⁺); assignment is tentative.
3122.1 4	(11^{-})		C	J^{π} : 185.5 γ (M1) to (10 ⁻), 411.4 γ (M1) to (10 ⁻).
3166.9 ^{<i>u</i>} 4	(12^{+})	<0.83 ps	C	J^{π} : 690.5 γ M1 to (11 ⁺), 1408.8 γ E2 to (10 ⁺).
222428	(4 4 -)			$T_{1/2}$: Effective value, not corrected for side-feeding.
3394.98 4	(11^{-})		C	J^{π} : 286.8 γ (M1) to (10 ⁻), 1636.4 γ (E1) to (10 ⁺).
3408.2° 5	(12^{+})		C	J^{π} : 490.4 γ to (11 ⁺); 1649.8 γ to (10 ⁺); assignment is tentative.
3561.2 4	(12)		C	$J^{*}: 439.1\gamma$ (M1) to (11);
3680.8 ^J 4	(12^{-})		С	J^{π} : 558.9 γ (M1) to (11 ⁻);
3721.5 ⁸ 4	(12^{-})		С	J^{π} : 326.6 γ (M1) to (11 ⁻), 1252.6 γ to (10 ⁻).
3786.1 4	(13-)		C	J^{π} : 225.0 γ to (12 ⁻); 618.7 γ to (12 ⁺); assignment is tentative.
4131.0 4	(13 ⁻)	0.28 ps 5	С	J^{π} : 450.3 γ M1 to (12 ⁻).
4166.78 4	(13-)	0.57 ps 8	C	J^{π} : 445.1 γ M1 to (12 ⁻); 771.3 γ to (11 ⁻).
4246.4 ^e 6			C	
4714.88 4	(14 ⁻)	0.263 ps 21	C	J^{n} : 548.0 γ M1 to (13 ⁻); 994.8 γ to (12 ⁻).
4801.4 ^{<i>J</i>} 4	(14 ⁻)	0.049 ps 14	С	J^{π} : 670.6 γ M1 to (13 ⁻); 1239.1 γ to (12 ⁻).
4824.7 ^{<i>a</i>} 7	(14^{+})		С	J^{π} : 1657.7 γ E2 to (12 ⁺).
5254.5 ⁵ 5	(15 ⁻)	0.44 ps 6	С	J^{π} : 453.1 γ M1 to (14 ⁻).
5371.8 <mark>8</mark> 5	(15 ⁻)	0.173 ps 28	С	J^{π} : 656.9 γ M1 to (14 ⁻); 1205.4 γ to (13 ⁻).
5933.3 <i>f</i> 5	(16^{-})	0.076 ps 14	С	J^{π} : 678.8 γ M1 to (15 ⁻).
6094.8 <mark>8</mark> 5	(16 ⁻)	0.111 ps 28	С	J^{π} : 722.6 γ to (15 ⁻); 1380.7 γ to (14 ⁻); band assignment.
6471.7 ^f 5	(17^{-})	<0.36 ps	С	J^{π} : 538.4 γ M1 to (16 ⁻).
		-		$T_{1/2}$: Effective value, not corrected for side-feeding.
6861.2 ⁸ 7	(17 ⁻)	<0.31 ps	С	J^{π} : 766.4 γ to (16 ⁻); 1489.3 γ to (15 ⁻); band assignment.
				$T_{1/2}$: Effective value, not corrected for side-feeding.
7382.7 <mark>5</mark> 6	(18 ⁻)		С	J^{π} : 911.0 γ to (17 ⁻).

[@] From ⁸⁶Sr(d,α).
 [&] From ⁸⁵Rb(p,d).

[†] From a least-squares fit to Eγ, unless otherwise stated.
[‡] Based on γγ(θ)(DCO) in ⁷⁶Ge(¹¹B,3nγ), unless otherwise stated.
[#] From DSAM (lineshape analysis) in ⁷⁶Ge(¹¹B,3nγ) (2002Sc35), unless otherwise stated. The uncertainties of the electronic and nuclear stopping power, which may be of the order of 10 %, are not included.

⁸⁴Rb Levels (continued)

 a Band(A): $\pi(g_{9/2})\nu(g_{9/2})$ at $J^\pi < 9^+,$ but $\pi(g_{9/2})\nu(g_{9/2}^3)$ at higher spin.

- ^{*b*} Band(B): Dominated by $\pi(f_{5/2})\nu(g_{9/2})$.
- ^{*c*} Band(C): Dominated by $\pi(p_{3/2})\nu(g_{9/2})$.
- ^d Band(D): Band based on 1398, (8⁻). Dominated by $\pi(p_{1/2}, p_{3/2}, f_{5/2})\nu(g_{9/2})$.
- ^{*e*} Band(E): $\pi(p_{3/2}, f_{5/2}, g_{9/2})\nu(g_{9/2})$.
- ^{*f*} Band(F): Magnetic dipole rotational band-1. The band is based on $\pi(p_{3/2}, g_{9/2}^2)\nu(g_{9/2})$.
- ^g Band(G): Magnetic dipole rotational band-2. The band is based on $\pi(p_{3/2}, g_{9/2}^2)\nu(g_{9/2})$.

Adopted Levels, Gammas (continued)										
γ ⁽⁸⁴ Rb)										
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [‡]	δ	α^{\dagger}	Comments	
248.06	3-	248.02 [#] 10	100#	0	2-	E2(+M1) [#]	≈4.6	≈0.0343	α (K)≈0.0300; α (L)≈0.00361; α (M)≈0.000594; α (N+)≈6.76×10 ⁻⁵ α (N)≈6.51×10 ⁻⁵ ; α (O)≈2.46×10 ⁻⁶ B(M1)(W.u.)≈(0.00020); B(E2)(W.u.)≈(82) Mult., δ : From α (K)exp=0.033 3 in ⁸⁴ Rb IT decay (1984La02).	
463.59	6-	215.61 [#] 10	95 [#] 3	248.06	3-	M3+E4 [#]	1.18 4	1.08 4		
		463.62 [#] 10	100 [#] 3	0	2-	E4 [#]		0.0391	$\alpha(K)=0.0333 5; \alpha(L)=0.00491 7; \alpha(M)=0.000817 12; \alpha(N+)=8.95\times10^{-5} 13 \alpha(N)=8.67\times10^{-5} 13; \alpha(O)=2.81\times10^{-6} 4 B(F4)(W \mu)=0.132 6$	
466.64	5-	(3.4)	0.23 8	463.59	6-	[M1]		361	$a(L)=304 5; \ \alpha(M)=50.5 7; \ \alpha(N+)=5.86 9$ $\alpha(N)=5.63 8; \ \alpha(O)=0.231 4$ $B(M1)(W.u)\approx0.08$ $L: From ^{81}Br(\alpha nx)$	
		218.3 2	100	248.06	3-	E2		0.0556		
472.40 543.28	(4 ⁻) (5 ⁺)	224.3 <i>1</i> 70.7 2	100 100 <i>9</i>	248.06 472.40	3 ⁻ (4 ⁻)	[E1]		0.266 5	$\alpha(K)=0.235 \ 4; \ \alpha(L)=0.0261 \ 5; \ \alpha(M)=0.00426 \ 7; \ \alpha(N+)=0.000485$ $\alpha(N)=0.000467 \ 8; \ \alpha(O)=1.80\times10^{-5} \ 3$ $R(E1)(Wn)=5.1\times10^{-5} \ 8$	
		76.4 2	41 9	466.64	5-	[E1]		0.212 4	$\alpha(\mathbf{K})=0.187 \ 3; \ \alpha(\mathbf{L})=0.0207 \ 4; \ \alpha(\mathbf{M})=0.00338 \ 6; \ \alpha(\mathbf{N}+)=0.000386 \ 7 \ \alpha(\mathbf{N})=0.000372 \ 6; \ \alpha(\mathbf{O})=1.446 \times 10^{-5} \ 23$	
		79.8 1		463.59	6-	[E1]		0.186	B(E1)(W.u.)= $1.7 \times 10^{-5} 5$ $\alpha(K)=0.1649 24; \alpha(L)=0.0182 3; \alpha(M)=0.00297 5;$ $\alpha(N+)=0.000340 5$ $\alpha(N+)=0.000347 5; \alpha(0)=1.278 \times 10^{-5} 10$	
572.9	(6+)	29.2 9	100	543.28	(5 ⁺)	(M1)		4.9 5	$\begin{array}{l} \alpha(\mathrm{N})=0.0005273; \ \alpha(\mathrm{O})=1.278\times10^{-7}19\\ \alpha(\mathrm{K})=4.35; \ \alpha(\mathrm{L})=0.505; \ \alpha(\mathrm{M})=0.0838; \ \alpha(\mathrm{N}+)=0.009710\\ \alpha(\mathrm{N})=0.00939; \ \alpha(\mathrm{O})=0.000394\\ \mathrm{Mult.: \ From}^{-81}\mathrm{Br}(\alpha,n\gamma). \end{array}$	

S

From ENSDF

 $^{84}_{37}$ Rb $_{47}$ -5

L

Adopted Levels, Gammas (continued)											
	γ ⁽⁸⁴ Rb) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [‡]	α^{\dagger}	Comments			
572.9	(6 ⁺)	110 [@] 1		463.59	6-						
602.1	4-,5,6	135.5 [@] 5 139.0 ^{@a} 5	100	466.64 463.59	5- 6-						
613.6	(4,5) ⁻	141.3 [@] 5 146.9 [@] 5		472.40 466.64	(4 ⁻) 5 ⁻						
		150.4 ^{@a} 5		463.59	6-						
619.7	(7+)	46.6 9	100	572.9	(6+)	(M1)	1.26 8	$\alpha(K)=1.11$ 7; $\alpha(L)=0.127$ 8; $\alpha(M)=0.0210$ 13; $\alpha(N+)=0.00246$ 15 $\alpha(N)=0.00236$ 15; $\alpha(O)=9.9\times10^{-5}$ 6 Mult : From ⁸¹ Br(α na)			
677.99	(7 ⁻)	214.4 1	100	463.59	6-	(M1)	0.0189	$\alpha(K) = 0.01673 \ 24; \ \alpha(L) = 0.00185 \ 3; \ \alpha(M) = 0.000306 \ 5; \alpha(N+) = 3.61 \times 10^{-5} \ 5 \alpha(N) = 3.47 \times 10^{-5} \ 5; \ \alpha(O) = 1.486 \times 10^{-6} \ 21 $ Mult : From ⁸¹ Br(α ny)			
702.8	(8 ⁺)	83.1 <i>1</i>	100	619.7	(7 ⁺)	(M1)	0.242	$\alpha(K)=0.213 \ 3; \ \alpha(L)=0.0242 \ 4; \ \alpha(M)=0.00401 \ 6; \ \alpha(N+)=0.000471 \ 7 \ \alpha(N)=0.000452 \ 7; \ \alpha(O)=1.91\times10^{-5} \ 3 \ Mult.; From 81Br(\alpha,n\gamma).$			
1156.9	$(6^+, 7, 8^+)$	453.8 [@]		702.8	(8 ⁺)						
		584.2 [@]		572.9	(6 ⁺)						
1167.1		565 ^{&}	100 <mark>&</mark>	602.1	4-,5,6						
1333.6	(9 ⁺)	630.9 <i>1</i>	100	702.8	(8 ⁺)	M1	0.001392 20	B(M1)(W.u.)=0.15 3 α (K)=0.001235 18; α (L)=0.0001329 19; α (M)=2.19×10 ⁻⁵ 3; α (N+)=2.60×10 ⁻⁶ α (N)=2.49×10 ⁻⁶ 4; α (O)=1.086×10 ⁻⁷ 16 Mult.: E2 admixtures are possible, but δ is not known.			
1397.8	(8 ⁻)	719.7 3	100	677.99	(7 ⁻)	(M1)	0.001037 15	$\alpha(K)=0.000920 \ 13; \ \alpha(L)=9.88\times10^{-5} \ 14; \ \alpha(M)=1.629\times10^{-5} \ 23; \ \alpha(N+)=1.93\times10^{-6} \ \alpha(N)=1.85\times10^{-6} \ 3; \ \alpha(O)=8.09\times10^{-8} \ 12$			
1662.3	(8 ⁻)	959.0 <i>3</i>	100	702.8	(8 ⁺)						
1715 1	(7-)	984.8 5	58 5	677.99	(7-)						
1745.1	(7)	1278.2 13	100	466.64	5 (0 ⁺)	M (1	0.00240.5	$(X) = 0.00200 = (X) = 0.00022(-5, -(M)) = 5.54 \times 10^{-5} = 0.0002(-5, -(M)) = 5.54 $			
1757.9	(10")	424.4 <i>I</i>	92 5	1333.0	(9*)	MI	0.00349 5	$\alpha(\mathbf{K})=0.00309 \ 5; \ \alpha(\mathbf{L})=0.000356 \ 5; \ \alpha(\mathbf{M})=5.54\times10^{-5} \ 8; \\ \alpha(\mathbf{N}+)=6.56\times10^{-6} \ 10 \\ \alpha(\mathbf{N})=6.29\times10^{-6} \ 9; \ \alpha(\mathbf{O})=2.73\times10^{-7} \ 4 \\ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.)=0.124 \ 18 $			
		1054.9 2	100 5	702.8	(8+)	E2		B(E2)(W.u.)=9.3 13			
1871.7	(9^+) (0^-)	1169.0 6	100	702.8	(8^+)						
2008.0	(9) (10^+)	557.1 5	14.8 16	1871.7	(7) (9^+)						

6

L

$\gamma(^{84}\text{Rb})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ} ‡	$E_f J_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments
2428.7	(10^{+})	1095.3 2	100 5	1333.6 (9+)	(M1)		
2461.8	(9 ⁻)	1063.8 <i>3</i>	100	1397.8 (8-)	(M1)		
2469.3	(10 ⁻)	401.3 5	100	2068.0 (9-)	. ,		
2476.6	(11 ⁺)	718.8 2	100	1757.9 (10 ⁺)	M1	0.001040 15	$\alpha(\mathbf{K})=0.000923 \ l3; \ \alpha(\mathbf{L})=9.90\times10^{-5} \ l4; \ \alpha(\mathbf{M})=1.634\times10^{-5} \ 23; \\ \alpha(\mathbf{N}+)=1.94\times10^{-6} \\ \alpha(\mathbf{N})=1.86\times10^{-6} \ 3; \ \alpha(\mathbf{O})=8.11\times10^{-8} \ l2$
							B(M1)(W.u.)=0.31 4
2710.6	(10^{-})	1376.5 <i>3</i>	100	1333.6 (9 ⁺)	(E1)		
2917.9	(11^{+})	489.3 2	100 6	2428.7 (10 ⁺)			
		1158.2 8	31 4	1757.9 (10 ⁺)			
2936.8	(10 ⁻)	474.9 2	77 4	2461.8 (9 ⁻)	(M1)	0.00268 4	α (K)=0.00237 4; α (L)=0.000257 4; α (M)=4.24×10 ⁻⁵ 6; α (N+)=5.02×10 ⁻⁶ 7 α (N)=4.81×10 ⁻⁶ 7; α (O)=2.09×10 ⁻⁷ 3
		868.0 14	21.1 22	2068.0 (9 ⁻)			
		1181.0 <i>3</i>	100 7	1757.9 (10 ⁺)			
		1274.0 4	77 7	1662.3 (8-)			
2972.4	(9 ⁻)	1227.1 12	100	1745.1 (7 ⁻)			
3028.2	(10^{-})	1365.4 5	100	1662.3 (8 ⁻)			
3107.9	(10^{-})	135.5 2	49 <i>4</i>	2972.4 (9 ⁻)			
		1445.5 15	62.9	$1662.3 (8^{-})$			
		17/1.9 9	100 9	1333.6 (9+)			
3122.1	(11-)	185.5 <i>1</i>	100 5	2936.8 (10 ⁻)	(M1)	0.0275	$\alpha(K)=0.0243 \ 4; \ \alpha(L)=0.00271 \ 4; \ \alpha(M)=0.000447 \ 7; \ \alpha(N+)=5.28\times10^{-5} \ 8 \\ \alpha(N)=5.06\times10^{-5} \ 8; \ \alpha(O)=2.16\times10^{-6} \ 3 $
		411.4 <i>1</i>	41.8 21	2710.6 (10 ⁻)	(M1)	0.00376 6	$\alpha(K)=0.003335; \alpha(L)=0.0003625; \alpha(M)=5.97\times10^{-5}9; \alpha(N+)=7.07\times10^{-6}10$ $\alpha(N)=6.78\times10^{-6}10; \alpha(O)=2.94\times10^{-7}5$
3166.9	(12 ⁺)	690.5 <i>3</i>	37.6 22	2476.6 (11 ⁺)	M1	0.001137 16	$\alpha(K)=0.001009 \ I5; \ \alpha(L)=0.0001084 \ I6; \ \alpha(M)=1.79\times10^{-5} \ 3; \ \alpha(N+1)=2.12\times10^{-6}$
							$\alpha(N) = 2.03 \times 10^{-6} 3; \alpha(O) = 8.87 \times 10^{-8} 13$ $\alpha(N) = 0.032$
		1409 9 2	100.6	1757.0 (10^{+})	EO		D(W11)(W.u.)>0.022 D(E2)(W.u.)>4.1
3394.9	(11-)	286.8 2	76 6	$3107.9 (10^{-})$	(M1)	0.00906 13	$\alpha(K) = 0.00802 \ 12; \ \alpha(L) = 0.000880 \ 13; \ \alpha(M) = 0.0001454 \ 21;$
							$\alpha(N+)=1.719\times10^{-3}$ $\alpha(N)=1.648\times10^{-5}$ 24; $\alpha(O)=7.10\times10^{-7}$ 10
		366.6 2	72 6	3028.2 (10 ⁻)	(M1)	0.00496 7	$\alpha(K)=0.00439$ 7; $\alpha(L)=0.000479$ 7; $\alpha(M)=7.90\times10^{-5}$ 12; $\alpha(N+)=9.35\times10^{-6}$ 14
							$\alpha(N) = 8.97 \times 10^{-6}$ 13: $\alpha(O) = 3.88 \times 10^{-7}$ 6
		1636.4 <i>4</i>	100 8	$1757.9 (10^+)$	(E1)		
3408.2	(12^{+})	490.4 2	100 9	2917.9 (11 ⁺)	(21)		
	(=)	1649.8 6	53 4	1757.9 (10 ⁺)			
3561.2	(12 ⁻)	439.1 <i>I</i>	100	3122.1 (11 ⁻)	(M1)	0.00322 5	$ \alpha({\rm K}) = 0.00285 \ 4; \ \alpha({\rm L}) = 0.000310 \ 5; \ \alpha({\rm M}) = 5.11 \times 10^{-5} \ 8; \ \alpha({\rm N}+) = 6.05 \times 10^{-6} \ 9 \\ \alpha({\rm N}) = 5.80 \times 10^{-6} \ 9; \ \alpha({\rm O}) = 2.52 \times 10^{-7} \ 4 $

7

 $^{84}_{37}\text{Rb}_{47}$ -7

					Ad	opted Levels, G	ammas (continued)		
γ ⁽⁸⁴ Rb) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments		
3680.8	(12 ⁻)	558.9 2	100	3122.1 (11 ⁻)	(M1)	0.00183 3	$\alpha(K)=0.001626\ 23;\ \alpha(L)=0.0001755\ 25;\ \alpha(M)=2.90\times10^{-5}\ 4;\\\alpha(N+)=3.43\times10^{-6}\ 5$		
3721.5	(12 ⁻)	326.6 1	100 7	3394.9 (11 ⁻)	(M1)	0.00657 10	$\alpha(N)=3.29\times10^{-6} 5; \ \alpha(O)=1.432\times10^{-7} 20$ $\alpha(K)=0.00582 9; \ \alpha(L)=0.000636 9; \ \alpha(M)=0.0001051 15; \ \alpha(N+)=1.243\times10^{-5}$		
		599.8 2	82 4	3122.1 (11 ⁻)	(M1)	0.001561 22	$ \begin{array}{l} \alpha(\mathrm{N}) = 1.191 \times 10^{-5} \ 17; \ \alpha(\mathrm{O}) = 5.14 \times 10^{-7} \ 8 \\ \alpha(\mathrm{K}) = 0.001385 \ 20; \ \alpha(\mathrm{L}) = 0.0001491 \ 21; \ \alpha(\mathrm{M}) = 2.46 \times 10^{-5} \ 4; \\ \alpha(\mathrm{N}+) = 2.92 \times 10^{-6} \\ \alpha(\mathrm{N}) = 2.80 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 1.218 \times 10^{-7} \ 17 \end{array} $		
3786.1	(13-)	1252.6 <i>11</i> 225.0 <i>1</i> 618.7 <i>3</i>	12.1 <i>14</i> 95 5 100 5	2469.3 (10 ⁻) 3561.2 (12 ⁻) 3166.9 (12 ⁺)					
4131.0	(13 ⁻)	344.9 2 450.3 2	26.1 <i>17</i> 100 <i>4</i>	3786.1 (13 ⁻) 3680.8 (12 ⁻)	M1	0.00303 5	α (K)=0.00269 4; α (L)=0.000291 4; α (M)=4.81×10 ⁻⁵ 7; α (N+)=5.70×10 ⁻⁶ 8 α (N)=5.46×10 ⁻⁶ 8; α (O)=2.37×10 ⁻⁷ 4		
		569.7 2	69 4	3561.2 (12 ⁻)	(M1)	0.001756 25	B(M1)(W.u.)=0.44 9 α (K)=0.001557 22; α (L)=0.0001679 24; α (M)=2.77×10 ⁻⁵ 4; α (N+)=3.28×10 ⁻⁶ α (N)=3.15×10 ⁻⁶ 5; α (O)=1.370×10 ⁻⁷ 20		
4166.7	(13 ⁻)	445.1 <i>I</i>	100 5	3721.5 (12 ⁻)	M1	0.00312 5	B(M1)(W.u.)=0.15 3 $\alpha(K)=0.00276 4; \alpha(L)=0.000300 5; \alpha(M)=4.95\times10^{-5} 7; \alpha(N+)=5.86\times10^{-6} 9$ $\alpha(N)=5.61\times10^{-6} 8; \alpha(O)=2.44\times10^{-7} 4$ B(M1)(W.u.)=0.40 7		
		771.3 12	10.9 <i>19</i>	3394.9 (11 ⁻)	[E2]	0.001014 15	B(M1)(w.u.)=0.40 7 $\alpha(K)=0.000897 \ 13; \ \alpha(L)=9.80\times10^{-5} \ 15; \ \alpha(M)=1.615\times10^{-5} \ 24; \ \alpha(N+)=1.90\times10^{-6} \ \alpha(N)=1.82\times10^{-6} \ 3; \ \alpha(O)=7.75\times10^{-8} \ 12$		
4246.4		838.2 3	100	3408.2 (12 ⁺)			B(E2)(W.U.)=10.4		
4714.8	(14 ⁻)	548.0 <i>1</i>	100 6	4166.7 (13 ⁻)	M1	0.00192 3	$\alpha(K)=0.001702\ 24;\ \alpha(L)=0.000184\ 3;\ \alpha(M)=3.03\times10^{-5}\ 5;\ \alpha(N+)=3.59\times10^{-6}$		
		994.8 <i>5</i>	43 <i>3</i>	3721.5 (12 ⁻)	[E2]		$\alpha(N)=3.44\times10^{-6} 5; \ \alpha(O)=1.498\times10^{-7} 21$ B(M1)(W.u.)=0.36 4 B(E2)(W.u.)=30 4		
4801.4	(14 ⁻)	670.6 2	100 6	4131.0 (13 ⁻)	M1	0.001214 17	$\alpha(\mathbf{K})=0.001077 \ 15; \ \alpha(\mathbf{L})=0.0001157 \ 17; \ \alpha(\mathbf{M})=1.91\times10^{-5} \ 3; \\ \alpha(\mathbf{N}+)=2.27\times10^{-6} \\ \alpha(\mathbf{N})=2.17\times10^{-6} \ 3; \ \alpha(\mathbf{O})=9.47\times10^{-8} \ 14 \\ \mathbf{B}(\mathbf{M}_{1})(\mathbf{W}_{11})=0.82 \ 24 $		
		1015.2 <i>3</i> 1239.1 8	64 <i>3</i> 18.8 <i>18</i>	3786.1 (13 ⁻) 3561.2 (12 ⁻)	(M1) [E2]		$B(M1)(W.u.)=0.15\ 5$ $B(E2)(W.u.)=19\ 6$		

 ∞

L

$\gamma(^{84}\text{Rb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{\dagger}	Comments
4824.7	(14^{+})	1657.7 5	100	3166.9 (12+)	E2		
5254.5	(15 ⁻)	453.1 <i>1</i>	100	4801.4 (14-)	M1	0.00299 5	$\alpha(K)=0.00265 4$; $\alpha(L)=0.000287 4$; $\alpha(M)=4.74\times10^{-5} 7$; $\alpha(N+)=5.61\times10^{-6} 8$
							$\alpha(N) = 5.38 \times 10^{-6} 8; \alpha(O) = 2.33 \times 10^{-7} 4$
							B(M1)(W.u.)=0.54 8
5371.8	(15 ⁻)	656.9 2	100 6	4714.8 (14 ⁻)	M1	0.001272 18	$\alpha(K)=0.001128 \ 16; \ \alpha(L)=0.0001213 \ 17; \ \alpha(M)=2.00\times10^{-5} \ 3; \ \alpha(N+)=2.37\times10^{-6}$
							$\alpha(N)=2.27\times10^{-6} 4; \alpha(O)=9.92\times10^{-6} 14$
		1205 4 5	01 5	41667 (12-)	(E2)		B(M1)(W.u.)=0.25.5
	(A. C)	1205.4 5	81.5	4100.7 (15)	[E2]		B(E2)(W.U.)=20.3
5933.3	(16 ⁻)	678.8 2	100	5254.5 (15 ⁻)	MI	0.001182 17	$\alpha(K) = 0.001048 \ 15; \ \alpha(L) = 0.0001126 \ 16; \ \alpha(M) = 1.86 \times 10^{-5} \ 3; \ \alpha(N+) = 2.20 \times 10^{-6}$
							$\alpha(N)=2.11\times10^{-6}$ 3; $\alpha(O)=9.21\times10^{-6}$ 13
							B(M1)(W.u.)=0.93 17
6094.8	(16 ⁻)	722.6 4	100 7	5371.8 (15 ⁻)	[M1]	0.001028 15	$\alpha(K)=0.000912 \ 13; \ \alpha(L)=9.79\times10^{-5} \ 14; \ \alpha(M)=1.615\times10^{-5} \ 23;$
							$\alpha(N+)=1.92\times10^{-6}$
							$\alpha(N) = 1.84 \times 10^{-6} 3; \alpha(O) = 8.02 \times 10^{-8} 12$
							B(M1)(W.u.)=0.28 8
		1380.7 5	90 6	4714.8 (14 ⁻)	[E2]		B(E2)(W.u.)=22.6
6471.7	(17-)	538.4 2	100	5933.3 (16-)	M1	0.00200 3	$\alpha(K)=0.001772$ 25; $\alpha(L)=0.000191$ 3; $\alpha(M)=3.16\times10^{-5}$ 5; $\alpha(N+)=3.74\times10^{-6}$ 6
							$\alpha(N)=3.59\times10^{-6} 5; \alpha(O)=1.560\times10^{-7} 22$
							B(M1)(W.u.) > 0.39
6861.2	(17^{-})	766.4 5	100 10	6094.8 (16 ⁻)	[M1]		B(M1)(W.u.)>0.083
		1489.3 9	89 10	5371.8 (15-)	[E2]		B(E2)(W.u.)>5.4
7382.7	(18 ⁻)	911.0 <i>3</i>	100	6471.7 (17 ⁻)	(M1)		

[†] Additional information 1. [‡] From ⁷⁶Ge(¹¹B,3n γ), unless otherwise specified. [#] From ⁸⁴Rb IT decay. [@] From ⁸¹Br(α ,n γ). [&] From ⁷⁰Zn(¹⁸O,p3n γ).

9

^{*a*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---► γ Decay (Uncertain)

 $^{84}_{37} Rb_{47}$

