76 **Ge**(11 **B**,3n γ) 2002Sc35

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 110,2815 (2009)	30-Sep-2009

2002Sc35: $E(^{11}B)=50$ and 45 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma\gamma$, $\gamma\gamma\gamma(\theta)$ (DCO), lifetimes measured using the Doppler-shift

attenuation method; GASP spectrometer consisting of 40 Compton-suppressed HPGe detectors and inner ball of 80 BGO detectors. Others: the same collaboration 1998ScZN, 1998ScZW, 1999Sc14, 2000Sc17, and 2000Sc34.

Configuration assignments are based on comparison between observed states with these predicted using shell model (2002Sc35). Note that the high spin part of the level scheme is different to that proposed in 70 Zn $(^{18}$ O,p3n $\gamma)$ (1999Ha37).

⁸⁴ Rb	Levels
------------------	--------

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0 ^b	2-	32.82 d 7	J^{π} . T _{1/2} : From Adopted Levels.
247.50 ^c 10	3-	0.31 ns 6	J^{π} , $T_{1/2}$: From Adopted Levels.
462.58 <mark>b</mark> 23	6-	20.26 min 4	$J^{\pi}, T_{1/2}$: From Adopted Levels.
465.89 [°] 20	5-		-,- ×
471.78 [°] 14	4(-)		
542.38 ^{&} 21	$5^{(+)}$		
571.8 ^{&} 7	6(+)		
618.6 <mark>&</mark> 5	$7^{(+)}$		
676.98 <mark>b</mark> 25	$7^{(-)}$		
701.7 ^{&} 5	8(+)		
1332.6 ^{&} 5	9(+)	0.59 ps 10	
1396.8 ^d 4	$8^{(-)}$		
1661.3 5	(8^{-})		
1744.2 10	(7-)		
1756.8 ^{x} 5	$10^{(+)}$	1.11 ps <i>14</i>	
18/0.7 6	(9+)		
2067.0 ^{<i>a</i>} 5	(9 ⁻)		
2427.7 ^{<i>u</i>} 5	$10^{(+)}$		
2460.8 4	$9^{(-)}$		
2406.27	(10^{-})	0 104 21	
24/5.5	$10^{(-)}$	0.194 ps <i>21</i>	
2709.05 2916.8 ^{<i>a</i>} 5	(11^+)		
2935.7.4	$10^{(-)}$		
2971.4 5	(9 ⁻)		
3027.2 5	$10^{(-)}$		
3106.9 5	$10^{(-)}$		
3121.0 4	$11^{(-)}$	_	
3165.9 ^{&} 5	$12^{(+)}$	<0.83 [@] ps	
3393.8 ^ƒ 5	$11^{(-)}$		
3407.2 ^{<i>a</i>} 5	(12^{+})		
3560.1 5	$12^{(-)}$		
3679.8 ^e 5	12(-)		
3720.5 ⁷ 5	$12^{(-)}$		
3785.1 5	$13^{(-)}$		
4129.9 ^e 5	13(-)	0.28 ps 5	
4165.7 ^J 5	13(-)	0.57 ps 8	
4245.4 ^u 6			

76 Ge(11 B,3n γ) 2002Sc35 (continued)

⁸⁴Rb Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	E(level) [†]	Jπ‡	$T_{1/2}^{\#}$
4713.7 f 5	14(-)	0.263 ps 21	5370.8 ^f 5	$15^{(-)}$	0.173 ps 28	6860.2 ^{<i>f</i>} 7	(17 ⁻)	<0.31 [@] ps
4800.4 ^e 5	$14^{(-)}$	0.049 ps 14	5932.3 ^e 5	$16^{(-)}$	0.076 ps 14	7381.7 ^e 7	(18-)	
4823.6 ^{&} 7	$14^{(+)}$		6093.8 ^f 6	(16 ⁻)	0.111 ps 28			
5253.5 ^e 5	$15^{(-)}$	0.44 ps 6	6470.7 ^e 6	$17^{(-)}$	<0.36 [@] ps			

[†] From a least-squares fit to $E\gamma$.

[‡] From 2002Sc35, based on $\gamma\gamma(\theta)$ (DCO) and the apparent band structure, unless otherwise specified.

[#] From DSAM (lineshape analysis) in 2002Sc35, unless otherwise specified. The uncertainties of the electronic and nuclear stopping power, which may be of the order of 10 %, are not included.

[@] Effective value, not corrected for side-feeding.

& Band(A): Band based on $\pi(g_{9/2})\nu(g_{9/2})$ configuration at $J^{\pi} < 9^+$ and $\pi(g_{9/2})\nu(g_{9/2}^3)$ configuration at and above $J^{\pi}=9^+$.

^{*a*} Band(B): Band based on $\pi(p_{3/2}, f_{5/2}, g_{9/2})\nu(g_{9/2})$ configuration at 2429 keV.

^{*b*} Band(C): State dominated by the $\pi(f_{5/2})\nu(g_{9/2})$ configuration.

^{*c*} Band(D): State dominated by the $\pi(p_{3/2})\nu(g_{9/2})$ configuration.

 d Band(E): State dominated by the $\pi(p_{1/2},p_{3/2},f_{5/2})\nu(g_{9/2})$ configuration.

^{*e*} Band(F): Magnetic dipole rotational band based on the $\pi(p_{3/2}, g_{9/2}^2)\nu(g_{9/2})$ configuration at 3681 keV.

^f Band(G): Magnetic dipole rotational band based on the $\pi(p_{3/2}, g_{9/2}^2)\nu(g_{9/2})$ configuration at 3395 keV.

$\gamma(^{84}\text{Rb})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]	Comments
29.2 9		571.8	6(+)	542.38	5(+)	(M1) [‡]	
46.6 9		618.6	$7^{(+)}$	571.8	$6^{(+)}$	$(M1)^{\ddagger}$	
70.7 2	299 37	542.38	5 ⁽⁺⁾	471.78	4 ⁽⁻⁾	()	
76.4 2	123 28	542.38	5 ⁽⁺⁾	465.89	5^{-}		
79.8 <i>1</i>		542.38	$5^{(+)}$	462.58	6-		
83.1 <i>1</i>	169 27	701.7	8(+)	618.6	$7^{(+)}$	(M1) [‡]	
135.5 2	2.2 2	3106.9	$10^{(-)}$	2971.4	(9 ⁻)		
185.5 <i>1</i>	44 2	3121.0	11(-)	2935.7	10(-)	(M1)	Mult.: DCO=1.0 <i>I</i> , deduced by double gating on 83γ and 631γ .
214.4 <i>1</i>	39 7	676.98	$7^{(-)}$	462.58	6-		
218.3 2	6.2 6	465.89	5-	247.50	3-	E2 [‡]	
224.3 1	21 <i>I</i>	471.78	$4^{(-)}$	247.50	3-		
225.0 1	20 1	3785.1	$13^{(-)}$	3560.1	$12^{(-)}$		
247.5 1	74 7	247.50	3-	0	2^{-}		
286.8 2	7.5 6	3393.8	$11^{(-)}$	3106.9	$10^{(-)}$	(M1)	Mult.: DCO=0.9 1, deduced by gating on 327γ .
326.6 1	28 2	3720.5	$12^{(-)}$	3393.8	11 ⁽⁻⁾	(M1)	Mult.: DCO=1.0 <i>I</i> , deduced by double gating on 83γ and 631γ .
344.9 2	6.0 4	4129.9	$13^{(-)}$	3785.1	$13^{(-)}$		
366.6 2	7.16	3393.8	$11^{(-)}$	3027.2	$10^{(-)}$	(M1)	Mult.: DCO=1.1 2, deduced by gating on 327γ .
401.3 5	2.1 4	2468.2	(10^{-})	2067.0	(9-)		
411.4 <i>1</i>	18.4 9	3121.0	11 ⁽⁻⁾	2709.6	10 ⁽⁻⁾	(M1)	Mult.: DCO=0.96 9, deduced by double gating on 83γ and 631γ .
424.4 1	58 <i>3</i>	1756.8	$10^{(+)}$	1332.6	9(+)	M1	Mult.: DCO=0.86 5, deduced by gating on 83γ .
439.1 <i>1</i>	34 2	3560.1	$12^{(-)}$	3121.0	$11^{(-)}$	(M1)	Mult.: DCO=0.9 1, deduced by gating on 186γ .
445.1 <i>1</i>	43 2	4165.7	13 ⁽⁻⁾	3720.5	12 ⁽⁻⁾	M1	Mult.: DCO=1.1 I , deduced by double gating on 83γ and 631γ .

Continued on next page (footnotes at end of table)

⁷⁶Ge(¹¹B,3nγ) 2002Sc35 (continued)

$\gamma(^{84}\text{Rb})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
450.3 2	23 1	4129.9	$13^{(-)}$	3679.8	$12^{(-)}$	M1	Mult.: DCO=1.2.2, deduced by gating on 186γ .
453.1 <i>1</i>	30 2	5253.5	$15^{(-)}$	4800.4	$14^{(-)}$	M1	Mult.: DCO=1.0 I , deduced by gating on 186 γ .
474.9 2	6.9 4	2935.7	$10^{(-)}$	2460.8	9(-)	(M1)	Mult.: DCO=0.9 1 , deduced by gating on 186γ .
489.3 2	16.9 11	2916.8	(11^{+})	2427.7	$10^{(+)}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
490.4 2	23 2	3407.2	(12^+)	2916.8	(11^{+})		
538.4 2	17.3 9	6470.7	$17^{(-)}$	5932.3	$16^{(-)}$	M1	Mult.: DCO=0.9.2 , deduced by gating on 186γ .
548.0 1	34 2	4713.7	14 ⁽⁻⁾	4165.7	13 ⁽⁻⁾	M1	Mult.: DCO=1.0 <i>l</i> , deduced by double gating on 83γ and 631γ .
557.1 5	8.69	2427.7	$10^{(+)}$	1870.7	(9+)		
558.9 2	37 2	3679.8	$12^{(-)}$	3121.0	$11^{(-)}$	(M1)	Mult.: DCO=1.1 I , deduced by gating on 186 γ .
569.7 2	15.8 9	4129.9	$13^{(-)}$	3560.1	$12^{(-)}$	(M1)	Mult.: DCO=1.0 2, deduced by gating on 186γ .
599.8 2	23 1	3720.5	$12^{(-)}$	3121.0	$11^{(-)}$	(M1)	Mult.: DCO=1.0 1, deduced by gating on 186γ .
618.7 <i>3</i>	21 <i>I</i>	3785.1	$13^{(-)}$	3165.9	$12^{(+)}$		
630.9 1	100 5	1332.6	$9^{(+)}$	701.7	$8^{(+)}$	M1+E2	Mult.: DCO=0.82 4 , deduced by gating on 83γ .
656.9 2	17.1 11	5370.8	15(-)	4713.7	14(-)	M1	Mult.: DCO=1.1 I , deduced by double gating on 83γ and 631γ .
670.6 2	33 2	4800.4	$14^{(-)}$	4129.9	$13^{(-)}$	M1	Mult.: DCO=1.2.2 , deduced by gating on 186γ .
678.8 2	22 1	5932.3	$16^{(-)}$	5253.5	$15^{(-)}$	M1	Mult.: DCO=1.2.2 , deduced by gating on 186γ .
690.5 <i>3</i>	18.8 11	3165.9	12 ⁽⁺⁾	2475.5	$11^{(+)}$	M1	Mult.: DCO=0.9 1, deduced by double gating on 83γ and 631γ .
718.8 2	38 2	2475.5	$11^{(+)}$	1756.8	10 ⁽⁺⁾	M1	Mult.: DCO=1.0 <i>l</i> , deduced by double gating on 83γ and 631γ .
719.7 <i>3</i>	7.5 9	1396.8	$8^{(-)}$	676.98	$7^{(-)}$	(M1)	Mult.: DCO=1.1 2, deduced by gating on 186γ .
722.6 4	15.0 11	6093.8	(16 ⁻)	5370.8	$15^{(-)}$		
766.4 5	8.4 8	6860.2	(17^{-})	6093.8	(16 ⁻)		
771.3 12	4.7 8	4165.7	$13^{(-)}$	3393.8	$11^{(-)}$		
838.2 <i>3</i>	20 1	4245.4		3407.2	(12^{+})		
868.0 14	1.9 2	2935.7	$10^{(-)}$	2067.0	(9 ⁻)		
911.0 <i>3</i>	10.7 6	7381.7	(18^{-})	6470.7	$17^{(-)}$	(M1)	Mult.: DCO=1.2 3 , deduced by gating on 186γ .
959.0 <i>3</i>	11.1 9	1661.3	(8 ⁻)	701.7	$8^{(+)}$		
984.8 <i>5</i>	6.4 6	1661.3	(8 ⁻)	676.98	$7^{(-)}$		
994.8 <i>5</i>	14.6 11	4713.7	$14^{(-)}$	3720.5	$12^{(-)}$		E_{γ} : poor fit. Level-energy difference=993.22.
1015.2 3	21 <i>I</i>	4800.4	$14^{(-)}$	3785.1	$13^{(-)}$	(M1)	Mult.: DCO=1.0.2 , deduced by gating on 186γ .
1054.9 2	63 <i>3</i>	1756.8	$10^{(+)}$	701.7	8(+)	E2	Mult.: DCO=1.6 1 , deduced by gating on 83γ .
1063.8.3	7.9.8	2460.8	9 (-)	1396.8	8(-)	(M1)	Mult: $DCO=0.8 I$, deduced by gating on 186γ .
1095.3 2	58 3	2427.7	10 ⁽⁺⁾	1332.6	9 ⁽⁺⁾	(M1)	Mult.: DCO=0.89 9, deduced by double gating on 83γ and 631γ
1158.2.8	5.3.6	2916.8	(11^{+})	1756.8	$10^{(+)}$		
1169.0.6	12 4 11	1870.7	(9^+)	701.7	8 ⁽⁺⁾		
1181.0.3	906	2935 7	$10^{(-)}$	1756.8	$10^{(+)}$		E : poor fit Level-energy difference-1178 9
1205 4 5	13 0 0	5370.8	15(-)	1150.0 A165 7	13(-)		L_{γ} . poor it. Lever-energy unreference=1170.9.
1205.4 5	174	2971.4	(9^{-})	1744.2	(7^{-})		
1227.1 12	626	4800.4	1/(-)	3560.1	$12^{(-)}$		
1252.6.11	0.20	3720.5	$17^{(-)}$	2468.2	(10^{-})		
1252.0 11	5.4 4	2035 7	12^{-12}	1661.3	(10^{-})		
1274.04	216	1744.2	(7^{-})	165.80	5-		
1270.2 15	10.1.0	3027.2	(7)	1661.3	(8^{-})		
1305.4 <i>J</i> 1376.5 <i>3</i>	10.1 9 22 <i>1</i>	2709.6	$10^{(-)}$	1332.6	(8) 9 ⁽⁺⁾	(E1)	Mult.: DCO=0.86 9 , deduced by double gating on 83γ
1380.7 5	13.5 9	6093.8	(16 ⁻)	4713.7	$14^{(-)}$		and 0517.
1390.0 5	11.1 8	2067.0	(9 ⁻)	676.98	$7^{(-)}$		
1408.8 2	50 <i>3</i>	3165.9	12(+)	1756.8	10(+)	E2	Mult.: DCO=1.6 <i>l</i> , deduced by double gating on 83γ and 631γ .

Continued on next page (footnotes at end of table)

				⁷⁶ Ge(¹¹ H	3,3n γ)	2002Sc35 (continued)
					$\gamma(^{84}\text{Rb})$	(continued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
1445.5 15	2.8 4	3106.9	$10^{(-)}$	1661.3 (8 ⁻)		
1489.3 9	7.5 8	6860.2	(17^{-})	5370.8 15(-)		
1636.4 4	9.9 8	3393.8	11(-)	1756.8 10 ⁽⁺⁾	(E1)	Mult.: DCO=1.0 2 , deduced by double gating on 83γ and 631γ .
1649.8 6	12.2 8	3407.2	(12^{+})	1756.8 10 ⁽⁺⁾		
1657.7 5	14.6 11	4823.6	$14^{(+)}$	3165.9 12 ⁽⁺⁾	E2	Mult.: DCO=1.0 3 , deduced by double gating on 1055γ and 1409γ .
1771.9 9	4.5 4	3106.9	$10^{(-)}$	1332.6 9 ⁽⁺⁾		

[†] From 2002Sc35, unless otherwise specified. DCO ratios are based on gates of $\Delta J=1$ dipole transitions, unless otherwise stated. [‡] From adopted gammas (1991Do04).

 $^{84}_{37}\text{Rb}_{47}$

5

⁷⁶Ge(¹¹B,3nγ) 2002Sc35

⁸⁴₃₇Rb₄₇

⁷⁶Ge(¹¹B,3nγ) 2002Sc35 (continued)

 $^{84}_{37}\text{Rb}_{47}$