⁸⁴Nb IT decay **2000Ch07**

History								
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	D. Abriola and M. Galan	NDS 110,2815 (2009)	30-Sep-2009					

Parent: ⁸⁴Nb: E=338.7 11; $J^{\pi}=(5^{-})$; $T_{1/2}=103$ ns 19; %IT decay=100.0

2000Ch07 (also 1997Re12): Fragmentation of 92 Mo beam at E=60 MeV/nucleon. Particle identification through LISE3 magnetic spectrometer at GANIL facility. Search for isomers by measuring delayed γ rays using four leps detectors. No coincidence data are available due to low statistics.

Other:

2007Re18: Fragmentation of ¹⁰⁷Ag beam at E=750 MeV. Particle identification through fragment recoil separator. Search for isomers using the RISING (Rare ISotope INvestigations at GSI) array of 15 seven-element cluster Ge detectors. The detectors were placed in three angular rings at 51°, 90°, and 129° with respect to the secondary beam axis. Measured delayed γ-rays of 48, 65, 115, 141, 175 and 205 keV, thus confirming the existence of an isomer in ⁸⁴Nb.

Level scheme is as shown by 2000Ch07 based on work of 1999Ma23.

⁸⁴Nb Levels

E(level) [†]	J ^{π‡}	T _{1/2}	Comments	
0	$(1^+,2^+,3^+)$			
47.8 9	$(3^-,4^-)$			
64.7 8	$(2^+,3^+)$			
162.9 <i>11</i>	$(4^+,5^+)$			
205.8 8	(3^{-})			
338.7 11	(5^{-})	103 ns 19	%IT=100	
			T _{1/2} : from 2000Ch07.	

[†] From Adopted Levels.

γ (84Nb)

E_{γ}^{\dagger}	I_{γ} †@	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α&	$I_{(\gamma+ce)}$ #@	Comments
47.4	$1.6 \times 10^3 \ 3$	47.8	$(3^-,4^-)$	0	$(1^+,2^+,3^+)$	(E1)	1.031 16	$3.2 \times 10^3 6$	
65.0	$1.2 \times 10^2 9$	64.7	$(2^+,3^+)$	0	$(1^+, 2^+, 3^+)$	(M1)	0.76 4	$2.1 \times 10^2 16$	
114.7	100 15	162.9	$(4^+,5^+)$	47.8	$(3^-,4^-)$	(E1)	0.0803 12	108 <i>16</i>	
133.3	76 9	338.7	(5^{-})	205.8	(3^{-})	(E2)	0.408 6	107 <i>13</i>	
141.4	57 9	205.8	(3^{-})	64.7	$(2^+,3^+)$	(E1)	0.0436 7	59 9	
163 ^a	12 <i>3</i>	162.9	$(4^+,5^+)$	0	(1+,2+,3+)			12 3	E_{γ} : tentative γ proposed by 2000Ch07, I_{γ} by evaluators.
175.4	46 7	338.7	(5^{-})	162.9	$(4^+,5^+)$	(E1)	0.0234 4	47 <i>7</i>	
205.9	49 10	205.8	(3^{-})	0	$(1^+, 2^+, 3^+)$	(E1)	0.01477 <i>21</i>	50 10	

[†] From 2000Ch07.

[‡] From Adopted Levels.

[‡] From intensity balance considerations in 2000Ch07.

[#] Calculated by evaluators, corrected for internal conversion based on assumed multipolarity.

[®] For absolute intensity per 100 decays, multiply by 0.65 6.

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Placement of transition in the level scheme is uncertain.

 $^{84}_{41}{\rm Nb}_{43}{\text -}2$

⁸⁴Nb IT decay 2000Ch07 Legend Decay Scheme $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ $I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays %IT=100.0 + 1333 (K2) 70 1 134 (E1)31 (5-) 338.7 103 ns 19 + 141.4 (E) 38 + 205.9 (E1) 33 + 114,7 | 1000 | (3-) 205.8 163 28 $(4^+,5^+)$ 162.9 $\frac{(2^+,3^+)}{(3^-,4^-)}$ 64.7 47.8 $(1^+,2^+,3^+)$ 0 $^{84}_{41}Nb_{43}$