²⁸Si(⁵⁸Ni,np γ) 1991Gr16

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	D. Abriola and M. Galan	NDS 110,2815 (2009)	30-Sep-2009			

1991Gr16: E=195 MeV measured: γ , $\gamma\gamma$, X γ , DCO.

⁸⁴Nb Levels

Unknown Band Heads X and Y in 1991Gr16 were assigned by evaluators by comparing data with 1999Ma23: X=570.4 keV and Y=337.9 keV.

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}
337.7 [‡]	(5 ⁻)	1267.7 [‡]	(8 ⁻)	2774.3 [†]	(12 ⁺)	4151.3	(15 ⁺)
565.7 [‡]	(6 ⁻)	1707.3	(10^{+})	2986.3	(13 ⁺)	5471.3	(17^{+})
570.3 [†]	(7^{+})	1765.7 [‡]	(9 ⁻)	3114.7 [‡]	(12 ⁻)	6905.3 [†]	(19 ⁺)
865.3	(8+)	1991.3	(11^{+})	3772.7? [‡]	(13 ⁻)		
923.7 [‡]	(7-)	2121.7 [‡]	(10 ⁻)	4044.3?†	(14^{+})		
1201.3	(9+)	2753.7 [‡]	(11^{-})	4087.7 [‡]	(14 ⁻)		

[†] Band(A): band-1. Possible configuration= $\pi g_{9/2} \otimes v(f,p \text{ or } g)$. [‡] Band(B): band-2. Possibly a π =- band with possible configuration= $vg_{9/2} \otimes \pi(f,p)$.

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
^x 114.5 3	72					
x140.0 6	53					
~143.3 6	14 3					
x192.30 6	93				.1.	
228.0 4	105# 8	565.7	(6 ⁻)	337.7 (5 ⁻)	(M1,E2)+	
×232.1 /	18 4					
232.1° 7	18 4	570.3	(7^{+})	337.7 (5 ⁻)		
$x_{250,50} = \frac{3}{4}$	30 S 15 A					
239.3 +	20.2	1001.2	(11^{+})	$1707.2(10^{+})$	$(M1 E2)^{\ddagger}$	Mult $\cdot \mathbf{P}(\mathbf{DCO}) = 0.50.5$
204.1 4	$126^{\#}$ 10	1991.5	(11)	1707.3 (10)	$(\mathbf{W}_{1},\mathbf{E}_{2})$	Mult.: $R(DCO) = 0.39 J$.
294.8 4	126" 10	805.3	(8.)	5/0.3 (7)	(E2)*	Mult.: $R(DCO)=1.01$ 14.
336.5 4	100	1201.3	(9+)	865.3 (8+)	(D,E2)*	Mult.: R(DCO)=0.74 4.
358.2 4	27 5	923.7	(7^{-})	565.7 (6 ⁻)	(M1,E2) [‡]	Mult.: R(DCO)=1.00 8.
x465.0 5	22.4					
~4/2.2 0 586 2 6	10.5	023 7	(7^{-})	$337.7(5^{-})$	$(\mathbf{F2})$	
530.20	41 J	1201.2	(7)	557.7(5)	(E2)	
031.3 0	14 5	1201.5	(9)	570.5 (7)	(T2) [†]	
/01.9 0 x792 50 10	84 0 10 7	1267.7	(8)	565.7 (6)	(E2)*	Mult.: R(DCO)=1.44 11.
783.3 10	19 /	1001.2	(11+)	1201.2 (0+)	(T2) [†]	
789.6 8	99 8	1991.3	(11')	1201.3 (91)	(E2)*	Mult.: $R(DCO)=1.08 \ 8.$
841.7 8	52° 10	1765.7	(9 ⁻)	923.7 (7 ⁻)	(E2)	
842.6 8	109 ^{^w} 15	1707.3	(10^{+})	865.3 (8 ⁺)	(E2)	
854.3 8	95 10	2121.7	(10^{-})	1267.7 (8 ⁻)	(E2) [‡]	Mult.: R(DCO)=1.43 11.
^x 896.7 10	27 6					

$\gamma(^{84}\text{Nb})$

²⁸Si(⁵⁸Ni,npγ) **1991Gr16** (continued)

$\gamma(^{84}\text{Nb})$ (continued)

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [†]	Comments
972.3 10	59 15	4087.7	(14 ⁻)	3114.7 (12-)	(E2)	
988.5 ^e 15	60 [@] 20	2753.7	(11^{-})	1765.7 (9 ⁻)	(E2)	
993.5 15	81 [@] 25	3114.7	(12^{-})	2121.7 (10 ⁻)	(E2)	
995.4 8	125 [@] 20	2986.3	(13 ⁺)	1991.3 (11+)	(E2) [‡]	Mult.: R(DCO)=1.09 7.
1019 ^f 2 1067.6 <i>10</i>	53 <i>10</i> 68 <i>18</i>	3772.7? 2774.3	(13^{-}) (12^{+})	$2753.7 (11^{-})$ $1707.3 (10^{+})$	(E2) (E2)	
^x 1073.4 10	43 10			()		
1165.2 <i>10</i> <i>x</i> 1170.0 <i>10</i>	88 <i>12</i> 59 <i>20</i>	4151.3	(15 ⁺)	2986.3 (13 ⁺)	(E2) [‡]	Mult.: R(DCO)=1.02 10.
1270 ^{<i>f</i>} 2	43 7	4044.3?	(14^{+})	2774.3 (12 ⁺)	(E2)	
1320.2 <i>15</i> <i>x</i> 1339 <i>1</i> <i>x</i> 1286 2	50 <i>15</i> 50 <i>15</i> 27 <i>10</i>	5471.3	(17 ⁺)	4151.3 (15 ⁺)	(E2)	
1380 2 1434 2	45 15	6905.3	(19+)	5471.3 (17+)	(E2)	

[†] Authors' assignments are based on DCO ratio measurements and observation that the high-spin states populated in heavy-ion reactions decay via cascades of stretched E2 and E2/M1 transitions. They assign multipolarities for transition without DCO ratios as tentative.

[±] Authors have determined these from measured DCO ratios.

[#] Intensity may be reduced due to long lifetimes.

[@] Doublet. Intensity estimated from coin gates.

& Unplaced γ ray in 1991Gr16 placed by the evaluators based on results from ⁵⁸Ni(²⁸Si,pn γ) in 1999Ma23.

^{*a*} γ placed from 566 to 306 level In Adopted Levels, Gammas.

^b γ placed from 865 to 674 level In Adopted Levels, Gammas.

^c Probably the same As 781.3 γ from 1590 level In ⁵⁸Ni(²⁸Si,pn γ).

^d This γ defines a separate level At 1206 keV In ⁵⁸Ni(²⁸Si,pn γ).

^e A 988 γ is placed from a 5072 level In ⁵⁸Ni(²⁸Si,pn γ) study.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{84}_{41}\text{Nb}_{43}$

²⁸Si(⁵⁸Ni,npγ) 1991Gr16

 $^{84}_{41}\text{Nb}_{43}$