Adopted Levels, Gammas | | | History | | | |-----------------|----------|---------------------|------------------------|--| | Type | Author | Citation | Literature Cutoff Date | | | Full Evaluation | B. Singh | NDS 110,2815 (2009) | 30-Sep-2009 | | $S(n)=1.59\times10^4 \text{ syst}; S(p)=3.4\times10^3 \text{ syst}; Q(\alpha)=-1.4\times10^3 \text{ syst}$ 2012Wa38 Note: Current evaluation has used the following Q record 15760 syst 3380 syst -1410 syst 2009AuZZ. $\Delta S(n) = 640$, $\Delta S(p) = 500$, $\Delta Q(\alpha) = 1540$ (syst, 2009 AuZZ). $Q(\varepsilon p) = 4120 \ 400 \ (syst, 2009AuZZ).$ Additional information 1. Values in 2003Au03 are: $S(n)=16130\ 640$, $S(p)=4140\ 510$, $Q(\alpha)=-2710\ 1540$, $Q(\epsilon p)=3360\ 410$; all from systematics. 2007WeZX, 2002Fa13, 2001Ki13: 84 Mo isotope formed in the fragmentation of 112 Sn beam at 1 GeV/nucleon with nickel target using fragment separator FRS at GSI facility. Measured positrons, γ rays and isotopic half-life. These measurements are also described in two Ph.D. theses from the University of Munich in 2001 by E. Wefers and A. Stolz. Additional information 2. - 2001Ga24: ⁸⁴Mo produced by fragmentation of ⁹²Mo beam at 60 MeV/nucleon with nickel target at GANIL facility using LISE3 separator. Measured positrons as a function of time and suggested that ⁸⁴Mo half-life is in the range of few seconds. The authors quoted half-life of 3.6 s 7 from a conference report by the GSI group (2002Fa13). - 2009St04: E=140 MeV/nucleon 124 Xe beam provided by coupled K500 and K1200 cyclotrons at NSCL, MSU. A1900 fragment separator used to analyze and separate 84 Mo fragments which were then implanted on double-sided silicon strip detector for β counting. Measured prompt and delayed γ rays using SeGA array of 16 Ge detectors. The half-life was measured from β decay events of 366 decay chains. From $\beta\gamma$ coin measurements, no γ rays could be assigned to 84 Nb. - This nuclide is important from structure point-of-view for several reasons e.g. N=Z nucleus and subsequent description of deformation trends; T=0 n-p pairing interaction; astrophysical significance as a 'waiting-point' nuclide in the rp process of nucleosynthesis in x-ray bursts, etc. - Structure calculations (deformation, yrast levels, etc.): 2006Sa25 (also 2006Sa45) (half-life=1-2 s); 2004Su08 (β_2 of \approx 0.28), 2004Wa31 (β_2 =0.37). #### ⁸⁴Mo Levels ## Cross Reference (XREF) Flags A 58 Ni(28 Si,2n γ), 28 Si(58 Ni,2n γ) | E(level) | J^{π} | $T_{1/2}$ | XREF | Comments | |-------------------------------|--------------------|-----------|------|--| | 0.0‡ | 0+† | 2.3 s 3 | A | %ε+%β ⁺ =100; %εp=? T=0 T _{1/2} : from β-correlated ⁸⁴ Mo fragments; weighted average of 2.2 s 2 (2009St04) and 3.7 s +10-8 (2007WeZX,2002Fa13,2001Ki13). Delayed proton decay is possible but none has been studied. | | 443.9‡ 2 | $(2^+)^{\dagger}$ | | A | | | 1117.3 [‡] 6 | $(4^+)^{\dagger}$ | | A | | | 2006.4‡ 8 | $(6^+)^{\dagger}$ | | A | | | 3069.4 [‡] <i>10</i> | $(8^+)^{\dagger}$ | | A | | | 4276.4 [‡] <i>15</i> | $(10^+)^{\dagger}$ | | A | | ⁸⁴Mo evaluated by B. Singh. ## Adopted Levels, Gammas (continued) ## ⁸⁴Mo Levels (continued) † Members of the yrast band based on g.s.; systematics of yrast structures of N=Z nuclei. # γ (84Mo) | $E_i(level)$ | \mathbf{J}_i^{π} | E_{γ} | $E_f J_f^{\pi}$ | Comments | |--------------------------------------|---|--|---|---| | 443.9 | (2+) | 443.9 2 | 0.0 0+ | Mult.: possibly stretched quadrupole from observation of relative intensity of 444γ at $40^{\circ}-163^{\circ}$ geometry (1991Ge01). | | 1117.3
2006.4
3069.4
4276.4 | (4 ⁺)
(6 ⁺)
(8 ⁺)
(10 ⁺) | 673.4 <i>5</i>
889.1 <i>6</i>
1063.0 <i>6</i>
1207 <i>I</i> | 443.9 (2 ⁺)
1117.3 (4 ⁺)
2006.4 (6 ⁺)
3069.4 (8 ⁺) | | ## **Adopted Levels, Gammas** #### Level Scheme [‡] Band(A): Yrast (g.s.) band. From comparison of yrast band structures with other N=Z nuclei, 2002Ma30 suggest that ⁸⁴Mo is moderately deformed ($\beta_2 \approx 0.26$) and that the alignment seems delayed, although, data for higher spins is needed to get a quantitative picture. ## **Adopted Levels, Gammas** (2^{+}) 673 443.9 $$^{84}_{42}\mathrm{Mo}_{42}$$