⁸⁴**Rb** ε decay 1982Gr07,1970Go44,1971Bo01

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. K. Tuli, A. Luca, S. Juutinen, and B. Singh	NDS 110,2815 (2009)	30-Sep-2009	

Parent: ⁸⁴Rb: E=0; J^{π}=2⁻; T_{1/2}=32.82 d 7; Q(ϵ)=2686.3 27; % ϵ +% β ⁺ decay=96.1 20

⁸⁴Rb-Q(ε): from 2009AuZZ. Other: 2681.0 23 (2003Au03).

1979Gr01: Ge(Li). Ey precision measurement making use of cascade-crossover relationships.

1970Go44: Ge(Li), CsI, NaI. Measured $\beta\gamma$, x γ . Deduced ε/β^+ .

1971Bo01: magnetic spectrometer. Measured β^+ spectra.

See also 1966He11, 1971Ge10, 1958Ko92, 1967Vr07.

Measurements of special observables:

 $\beta\gamma$ directional correlation: 1971Ma43, 1969De21, 1965Si09.

 $\beta\gamma$ circular-polarization correlation: 1973Sc02, 1963Bo20.

 β^+ endpoint energy and spectrum shape factor: 1980HuZS, 1971Bo01, 1964La03, 1958Be81.

Extraction of matrix elements and theoretical analysis are reported by 1980HuZS, 1973Sc02, 1971De02, 1971Ma43, and 1965Si10.

The $\gamma\gamma(\theta)$ measurement of 1965Ro06 disagrees with other experiments (see ⁸³Kr(n, γ) and ⁸⁴Br β^- decay (31.76 min)) and was therefore not adopted by the evaluators.

⁸⁴Kr Levels

E(level) [†]	Jπ‡	T _{1/2}
0	0^{+}	stable
881.615 <i>3</i>	2^{+}	
1897.784 10	2^{+}	

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

 ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(789 3)	1897.784		1.09 4	8.085 17	1.09 4	$\varepsilon K = 0.875; \ \varepsilon L = 0.1038; \ \varepsilon M + = 0.02138$
781.5 13	881.615	12.6 7	56.0 23	7.114 11	68.6 <i>16</i>	av E β = 340.5 <i>13</i> ; ε K= 0.6959 <i>19</i> ; ε L= 0.08111 23; ε M+= 0.01666 5 I ε : ε/β^+ =4.43 <i>18</i> deduced from ε K(exp)/ β^+ =3.96 <i>16</i> and ε L(exp)/ ε K(exp)=0.119 2 (1970Go44); other measurements: ε/β^+ =5.75 7 (1971Ge10); ε/β^+ =5.72 <i>12</i> (1958Ko92); ε/β^+ =5.66 42 (1955We40). Theoretical value: ε K/ β^+ =3.44 (allowed transition), ε K/ β^+ =4.2 to 4.7 (first-forbidden transition, model dependent, see 1970Go44). As discussed by 1970Go44 the values of 1955We40 and 1958Ko92 are probably too high because of summation and pileup effects. Also from theoretical considerations the
1657.8 8	0	13.1 6	13.4 6	9.509 ¹ <i>u</i> 19	26.5 11	lower value of 1970Go44 is preferred. av E β = 758.5 14; ε K= 0.4419 15; ε L= 0.05180 17; ε M+= 0.01065 4
						Deviation of 2% from unique-forbidden shape (1971Bo01.1980HuZS).

[†] Absolute intensity per 100 decays.

¹⁹⁸²Gr07: Ge(Li), FWHM=2.0 keV at 1.33 MeV. Measured Ey, Iy.

84 Rb ε decay 1982Gr07,1970Go44,1971Bo01 (continued)

$\gamma(^{84}\mathrm{Kr})$

E_{γ}^{\dagger}	I_{γ} ^{‡#}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
881.6041 16	100	881.615	2+	0	0^{+}	
1016.158 11	0.506 15	1897.784	2^{+}	881.615	2^{+}	
1897.751 11	1.07 3	1897.784	2^{+}	0	0^+	E_{γ} : sum of 881 γ +1016 γ (1995HeZZ).

 † From recommended standard energies (1995HeZZ).

[‡] From 1982Gr07. Others: 1966He11, 1971Ge10.
[#] For absolute intensity per 100 decays, multiply by 0.689 21.

84 Rb ε decay 1982Gr07,1970Go44,1971Bo01

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $I_{\gamma} < 2\% \times I_{\gamma}^{max}$
 $I_{\gamma} < 10\% \times I_{\gamma}^{max}$
 $I_{\gamma} > 10\% \times I_{\gamma}^{max}$

Legend

~	$\%\varepsilon + \%\beta^+ = 96.5$	$\frac{2^{-}}{Q_{\varepsilon}=2686.3}$	0 3 3 27	2.82 d 7
2 ⁺ 2 ⁺	<u> </u>	$\underline{I\beta^+}$	<u>І</u> 1.09	Log <i>ft</i> 8.085
2+	881.615	12.6	56.0	7.114
0+ .	0	stable 13.1	13.4	9.509 ¹

 $^{84}_{36}$ Kr₄₈