	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. K. Tuli, A. Luca, S. Juutinen, and B. Singh	NDS 110,2815 (2009)	30-Sep-2009	

Parent: ⁸⁴Br: E=3.2×10² 10; J^{π}=(6)⁻; T_{1/2}=6.0 min 2; Q(β ⁻)=4629 15; % β ⁻ decay=100.0

⁸⁴Br-T_{1/2}: from 1960Sa05. Other: 6 min (Levkovskii, et al, Sovt. Jour Nucl Phys. 8, 4 (1968)).

⁸⁴Br-Q(β^{-}): from 2009AUZZ. Other: 4632 14 (2003Au03).

⁸⁴Br-%β⁻ decay: %β⁻=100 since no IT decay has been observed. 1970Ha21: ⁸⁴Br production by fission of ²³⁵U and ⁸⁷Rb(n,α) reaction. Measured Eγ, Iγ, γγ and βγ coin; Ge(Li) and anthracene detectors.

Other: 1960Sa05.

Total decay energy deposit of 4950 keV 190 calculated by RADLIST code is in agreement with expected value of 4949 keV 100.

⁸⁴Kr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}
0.0	0^{+}	stable
881.7 4	2^{+}	
1897.7 4	2^{+}	
2344.6 5	4^{+}	
2768.6 7	5-	

[†] From least-squares fit to $E\gamma's$.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(2.18 \times 10^3 \ 10)$	2768.6	100	5.1 <i>1</i>	av E β =886 48 E β (endpoint)=2200 100 from $\beta\gamma$ coin with 424 γ , 882 γ and 1463 γ (1970Ha21).

[†] Absolute intensity per 100 decays.

$\gamma(^{84}\mathrm{Kr})$

I v normalization: $I(\gamma+ce)$ of $881.6\gamma+1897.7\gamma=100$.

Eγ‡	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.@	α^{\dagger}	Comments
424.0 447.0 881.6	3 98 10	2768.6 2344.6 881.7	5 ⁻ 4 ⁺ 2 ⁺	2344.6 4 ⁺ 1897.7 2 ⁺ 0.0 0 ⁺	E1	0.001469 21	$ α = 0.001469 21; α(K) = 0.001306 19; α(L) = 0.0001387 20; α(M) = 2.24 \times 10^{-5} 4; α(N+) = 2.25 \times 10^{-6} α(N) = 2.25 \times 10^{-6} 4 Mult.: Measured anisotropy [Iγ(0°)/Iγ(90°)] - 1 = 0.53 1 at 8.5 mK (1992Pr06) in NMR work on oriented nuclei. This anisotropy is larger than expected from theory which has been attributed by 1992Pr06 to possible M2 admixture. $

					⁸⁴ Br $β^-$ decay (6.0 min) 1970Ha21 (co			continued)	
						γ (⁸⁴ Kr) (continued)		
E_{γ}^{\ddagger}	Ιγ #&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	α^{\dagger}	Comments	
1016.0	1	1897.7	2+	881.7 2+	M1+E2	+0.84 7	0.000460 7	$\alpha = 0.000460 \ 7; \ \alpha(\text{K}) = 0.000409 \ 6; \\ \alpha(\text{L}) = 4.34 \times 10^{-5} \ 7; \ \alpha(\text{M}) = 7.03 \times 10^{-6} \ 10; \\ \alpha(\text{N}+) = 7.10 \times 10^{-7} \ 11 \\ \alpha(\text{N}) = 7.10 \times 10^{-7} \ 11 \ 10^{-7} \ 11 \\ \alpha(\text{N}) = 7.10 \times 10^{-7} \ 11 \ 10^{-7} \$	
1462.8	97 10	2344.6	4+	881.7 2+	E2		0.000288 4	$\alpha = 0.000288 \ 4; \ \alpha(K) = 0.000193 \ 3; \\ \alpha(L) = 2.04 \times 10^{-5} \ 3; \ \alpha(M) = 3.29 \times 10^{-6} \ 5; \\ \alpha(N+) = 7.20 \times 10^{-5} \ 10 \\ \alpha(N) = 3.33 \times 10^{-7} \ 5; \ \alpha(IPF) = 7.17 \times 10^{-5} \ 10 \\ \alpha(N) = 3.00000000000000000000000000000000000$	
1897.7	2	1897.7	2^{+}	$0.0 \ 0^+$					

[†] Additional information 1.
[‡] Uncertainties not given by the authors but 0.5 keV used by the evaluators to obtain level energies.
[#] Uncertainties stated by authors to be 10% on the average.
[@] From Adopted Levels, gammas.
[&] Absolute intensity per 100 decays.

84 Br β^- decay (6.0 min) 1970Ha21

 $^{84}_{36}{
m Kr}_{48}$