⁸²Se(α ,2n γ) 1990Ro10,2006Sc22

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. K. Tuli, A. Luca, S. Juutinen, and B. Singh	NDS 110.2815 (2009)	30-Sep-2009	

E=12-27 MeV. Enriched target. Measured: γ , ce, $\gamma(\theta)$, $\gamma(\theta, H, t)$, $\gamma\gamma$, $\gamma(t)$, $\gamma\gamma(t)$, γ linear polarization, excit. Deduced $\alpha(K)$ exp, assuming $\alpha(K)$ exp(882 γ ,E2)=5.9×10⁻⁴ (theory). HPGE, FWHM=0.9 at 60 keV, 1.9 at 1300 keV.

1985Ro22: preliminary report superseded by 1990Ro10.

2006Sc22: E=24 MeV. Target=layer of enriched ⁸²Se on the top of a layer. The Cd layer served as implantation host where recoil ⁸⁴Kr were stopped. Measured quadrupole moment of yrast 8⁺ state by level-mixing.

Other $(\alpha, 2n\gamma)$ studies:

1982Za04: E=16.5 MeV to 27.3 MeV. Enriched target. Ge(Li), NaI(Tl). Measured E γ , I γ , $\gamma\gamma$, α , γ (t), time-differential perturbed angular distributions.

1971Mc12: E=25 MeV. Enriched target. FWHM=3.0 keV at 1.33 MeV. Measured E γ , I γ , $\gamma(\theta)$, $\gamma(t)$.

1973Wy01, 1971WyZW: E=25 MeV. Enriched target. Si(Li), FWHM=2.5 keV at 700 keV. Measured conversion electron spectra.

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0 ^{<i>a</i>}	0+		
881.61 ^{<i>a</i>} 10	2+	3.2 [‡] ps 14	
1831.61 23	0^{+}	25 [‡] ps 10	
1897.82 ^b 18	2+	$0.30^{\#} \text{ ps } +7-3$	
2095.08 ^a 13	4+	0.45 [#] ps +5-7	
2345.45 ^b 13	4+	24 [‡] ps 3	
2622.93 23	2+	0.28 [#] ps 14	
2700.2 3	3-	1.7 [#] ps +14-11	
2770.66 ^c 15 3042.6 3	5^{-} (2 ⁺ ,3,4 ⁺)	7.6 [‡] ps 21	J ^{π} : possible configuration=(($\nu g_{9/2}$) ⁻¹ ($\nu p_{1/2}$) ⁻¹).
3172.66 ^{<i>a</i>} 15	6+	2.6 [‡] ps 7	
3219.59 ^d 15	5-	17 [‡] ps 4	J ^{π} : possible configuration=((π f _{5/2}) ⁻¹ (π g _{9/2})) or configuration=((π p _{3/2}) ⁻¹ (π g _{9/2})).
3236.17 ^a 18	8+	1.89 [@] μs 4	$g=-0.247\ 2\ (1982Za04)$ Q=0.36 4 (2006Sc22) Q: From level-mixing spectroscopy (lems) technique (2006Sc22) using Q(⁷⁹ Kr, 5/2 ⁻)=0.456 26 as reference value. J ^{π} : configuration=($v\ g_{9/2}$) ⁻² . T _{1/2} : Authors give av of their value 1.93 μ s 4 and 1.84 μ s 4 (1982Za04).
3288.69 17	5+	0.31 [#] ps <i>10</i>	
3587.21 ^d 16	6-	5.5 [‡] ps 14	
3638.69 25	(5 ⁻)	0.69 [#] ps +28–21	
3651.62 ^c 20	7-	.L.	
3831.72 ^{<i>d</i>} 16	7-	4.9^{4} ps 21	
3951.29 ⁰ 19	6+	$0.9^{\text{#}} \text{ ps } 5$	
3999.3 4	(4 ⁻)	0.35 [#] ps 10	
4350.2 3	(5 ⁻)	$0.28^{\#}$ ps +14-7	
4388.30 ^{<i>a</i>} 22	8-	6.7 ⁺ ps 17	
4407.5 5	(6 ⁻)	$0.31^{#}$ ps 14	
4718.63 ⁰ 19	8+	5.5 ⁺ ps 21	
4852.30 ^c 22	9-	$0.83^{#}$ ps 35	
4929.08 ^{<i>a</i>} 24	(9 ⁻)	0.55" ps 21	

⁸⁴Kr Levels

Continued on next page (footnotes at end of table)

⁸²Se(α ,2n γ) 1990Ro10,2006Sc22 (continued)

⁸⁴Kr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
4976 <i>1</i>	(9 ⁺)	<u>.</u>	
5204.19 ^a 25	10^{+}	0.14 [#] ps 4	
5373.5 ^a 3	12+	43.7 ^{&} ns 21	g=+0.17 2 (1990Ro10) J^{π} : configuration=($(\pi f_{5/2})^{-1}(\pi p_{3/2})^{-1}(\nu g_{9/2})^{-2}$). g: average value given by 1990Ro10 from their measurement of +0.175 15 and their earlier (1985Ro22) measurement of +0.14 3.
5448.83 ^b 21	10^{+}	3.5 [‡] ps <i>14</i>	
5640.8 ^d 3	(10 ⁻)	0.49 [#] ps 21	
5901.7 ^c 3 6068 1 6472.3 4	11-	1.9 [#] ps 6	
6572.1 <i>3</i> 6590.3 <i>6</i>	(12)-	0.42 [#] ps 14	
7015.8 4	(13)-	0.17 [#] ps 7	
7653.2 5	(14 ⁻)	0.28 [#] ps 7	
[†] From leas	(14)	offit to $E\gamma$.	

[‡] From recoil-distance technique.

From Doppler-shift attenuation technique.@ From external beam pulsing.

& From $\gamma(t)$.

^a Band(A): π =+ sequence-1. ^b Band(B): π =+ sequence-2. ^c Band(C): π =- Δ J=2 sequence. ^d Band(D): π =- Δ J=1 sequence.

82 Se(α ,2n γ) 1990Ro10,2006Sc22 (continued)								
							γ ⁽⁸⁴ Kr)	
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
63.5 <i>1</i>	44 7	3236.17	8+	3172.66 6+	E2		4.89	$\alpha(K) \exp = 7.2$ $\alpha(K) = 3.98.6$; $\alpha(L) = 0.779.13$; $\alpha(M) = 0.1262.20$; $\alpha(N+) = 0.01078.17$ $\alpha(N) = 0.01078.17$ Mult : E2 or M2 from $\alpha(K) \exp$ but M2 ruled out by Tup
169.3 <i>1</i>	100 13	5373.5	12+	5204.19 10+	E2		0.1324	$\begin{array}{l} \alpha(\text{K}) = 0.002 \text{ for } M2 \text{ for } \alpha(\text{K}) \text{cxp out } M2 \text{ funct out } 012 \text{ for } 1/2 \\ \alpha(\text{K}) = 0.088 30 \\ \alpha(\text{K}) = 0.1153 17; \ \alpha(\text{L}) = 0.01455 21; \ \alpha(\text{M}) = 0.00235 4; \\ \alpha(\text{N}+) = 0.000223 4 \\ \alpha(\text{N}) = 0.000223 4 \end{array}$
x179.0 5 180.1 2	4 ^{&} 1 20 3	3831.72	7-	3651.62 7-	M1+E2	-0.12 8	0.0277 20	α (K)=0.0245 <i>17</i> ; α (L)=0.00272 <i>22</i> ; α (M)=0.00044 <i>4</i> ; α (N+)=4.4×10 ⁻⁵ <i>4</i>
244.5 1	33 <i>3</i>	3831.72	7-	3587.21 6-	M1+E2	+0.07 3	0.01225 <i>21</i>	$\alpha(N) = 4.4 \times 10^{-5} 4$ $\alpha(K) \exp = 0.012 2$ $\alpha(K) = 0.01085 19; \ \alpha(L) = 0.001186 21; \ \alpha(M) = 0.000192 4;$ $\alpha(N+) = 1.94 \times 10^{-5} 4$
298.5 1	91	3587.21	6-	3288.69 5+	E1		0.00375 6	$\alpha(N)=1.94\times10^{-7} 4^{-7} \alpha=0.00375 \ 6; \ \alpha(K)=0.00333 \ 5; \ \alpha(L)=0.000355 \ 5; \ \alpha(M)=5.73\times10^{-5} 8; \ \alpha(N+)=5.74\times10^{-6} \ 8^{-7} \alpha=0.00375 \ 6; \ \alpha(M)=5.74\times10^{-6} \ 6; \ \alpha(M)=5.74\times1$
367.6 1	77 8	3587.21	6-	3219.59 5-	M1+E2	+0.24 6	0.00466 14	$\begin{aligned} &\alpha(\mathbf{N}) = 5.74 \times 10^{-6.8} \\ &\alpha(\mathbf{K}) \exp[=0.00414] \\ &\alpha = 0.00466 \ 14; \ \alpha(\mathbf{K}) = 0.00413 \ 12; \ \alpha(\mathbf{L}) = 0.000448 \ 14; \\ &\alpha(\mathbf{M}) = 7.25 \times 10^{-5} \ 22; \ \alpha(\mathbf{N}+) = 7.30 \times 10^{-6} \ 22 \\ &\alpha(\mathbf{N}) = 7.30 \times 10^{-6} \ 22 \end{aligned}$
419.0 <i>3</i> 425.2 <i>1</i>	3 <i>1</i> 240 20	3638.69 2770.66	(5 ⁻) 5 ⁻	3219.59 5 ⁻ 2345.45 4 ⁺	E1		0.001458 21	α (K)exp=0.0015 2 α =0.001458 21; α (K)=0.001296 19; α (L)=0.0001377 20; α (M)=2.22×10 ⁻⁵ 4; α (N+)=2.24×10 ⁻⁶ α (N)=2.24×10 ⁻⁶ 4
443.7 2	25 7	7015.8	(13)-	6572.1 (12) ⁻	M1		0.00283 4	$\alpha(N) = 2.24 \times 10^{-6} \ 7 \ \alpha(M) = 2.24 \times 10^{-6} \ 7 \ \alpha(M) = 0.00251 \ 4; \ \alpha(L) = 0.000270 \ 4; \ \alpha(M) = 4.37 \times 10^{-5} \ 7; \ \alpha(M) = 4.42 \times 10^{-6} \ 7 \ \alpha(N) = 4.42 \times 10^{-6} \ \pi(N) = 4.42 \times 10^{$
447.6 <i>3</i> 448.9 <i>1</i>	12 <i>3</i> 55 7	2345.45 3219.59	4+ 5 ⁻	1897.82 2 ⁺ 2770.66 5 ⁻	M1		0.00275 4	$ \substack{\alpha = 0.00275 \ 4; \ \alpha(K) = 0.00244 \ 4; \ \alpha(L) = 0.000263 \ 4; \ \alpha(M) = 4.25 \times 10^{-5} \\ 6; \ \alpha(N+) = 4.30 \times 10^{-6} \ 6 \\ \alpha(N) = 4.30 \times 10^{-6} \ 6 $
519 ^b 1 540.7 2 556.6 2	≈3 ^{&} 15 5 50 6	3219.59 4929.08 4388.30	5- (9-) 8-	2700.2 3 ⁻ 4388.30 8 ⁻ 3831.72 7 ⁻	D+Q M1+E2	+0.18 5 +0.17 4	0.00169 <i>3</i>	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0016 \ 2 \\ &\alpha = 0.00169 \ 3; \ \alpha(\text{K}) = 0.001501 \ 23; \ \alpha(\text{L}) = 0.0001606 \ 25; \\ &\alpha(\text{M}) = 2.60 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 2.63 \times 10^{-6} \ 4 \\ &\alpha(\text{N}) = 2.63 \times 10^{-6} \ 4 \end{aligned}$

ω

From ENSDF

⁸⁴₃₆Kr₄₈-3

 $^{84}_{36}{
m Kr}_{48}$ -3

⁸² Se(α,2nγ) 1990Ro10,2006Sc22 (continued)									
γ ⁽⁸⁴ Kr) (continued)									
Eγ	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{\dagger}	Comments
605.1 <i>4</i> 612.1 <i>2</i>	6 <i>3</i> 64 <i>9</i>	2700.2 3831.72	3- 7-	2095.08 3219.59	4 ⁺ 5 ⁻	E2		0.001760 25	$\begin{aligned} &\alpha(\text{K})\exp=0.0018\ 2\\ &\alpha=0.001760\ 25;\ \alpha(\text{K})=0.001559\ 22;\ \alpha(\text{L})=0.0001704\ 24;\\ &\alpha(\text{M})=2.76\times10^{-5}\ 4;\ \alpha(\text{N}+)=2.75\times10^{-6}\\ &\alpha(\text{N})=2.75\times10^{-6}\ 4\end{aligned}$
637.4 3	13 4	7653.2	(14 ⁻)	7015.8	$(13)^{-}$	D E1			
659.1 2	40.0	3831.72	/	31/2.00	0' 5+	EI			
662.63 67042	≈10 ²²	3951.29 6572 1	$(12)^{-}$	3288.69 5001 7	5' 11-				
604 1	$\sim 25^{\circ}$	6068	(12)	5373 5	11 12 ⁺				
711.6.2	~25	5640.8	(10^{-})	4929.08	(9^{-})				
730.2 1	38 6	5448.83	10+	4718.63	8 ⁺	E2		0.001084 16	α =0.001084 <i>16</i> ; α (K)=0.000962 <i>14</i> ; α (L)=0.0001041 <i>15</i> ; α (M)=1.685×10 ⁻⁵ <i>24</i> α (N)=1.689×10 ⁻⁶ <i>24</i>
763.0 2	11 3	4350.2	(5 ⁻)	3587.21	6-				
767.3 2	19 <i>3</i>	4718.63	8+	3951.29	6+	Q			
801.1 3	23 7	4388.30	8-	3587.21	6-	E2			
802.4 3	15 5	2700.2	3	1897.82	2'	EI			
810.0 2	0 2	2651.62	0	2770.66	5 5-	ED			$I_{\rm eff}$ from $I_{\rm eff}(0.01.6) = 0.11.2$
881.0 3	110~ 30	3031.02	/	2770.00	5	E2			E_{γ} : from $E_{\gamma}(881.6)=0.11$ S. E_{γ} : from $E_{\gamma}(881.6)=0.11$ S.
881.6 <i>1</i>	1000	881.61	2^+	0.0	0^+	[E2]			
886.9 2	20.3	4/18.63	8 · 5+	3831.72	/ /+	EI M1±E2	$\pm 0.1.1$		
947.6.3	93	3042.6	$(2^+, 3, 4^+)$	2095.08	4 ⁺	1411 1.2	10.41		
950.0 2	21 ^{<i>a</i>} 2	1831.61	0+	881.61	2+				
1016.2 <i>3</i>	15 <i>3</i>	1897.82	2+	881.61	2+	D+Q	+0.16 8		
1049.4 2	24 5	5901.7	11-	4852.30	9-	E2			
10/7.6 1	450 30	3172.66	6'	2095.08	4'	E2			$\alpha(\mathbf{K})\exp=0.0004 I$
1097.3 3	≈20 ^{cc}	4929.08	(9 ⁻)	3831.72	/-				
*1114 <i>I</i>	≈15 ^{cc}	2210.50	<i>z</i> -	2005 00	4+	E 1			
1124.5 2	105 15	5219.59	3	2095.08	4	EI			
1141.5 5	≈8 - 24_5	0390.3 6572 1	$(12)^{-}$	5448.85 5373 5	10^{-1} 12^{+1}	E1			
1200.7 2	43.8	4852.30	9-	3651.62	12 7 ⁻	E1 E2			
1213.5 1	645 30	2095.08	4+	881.61	2+	E2			
1228.6 3	10 3	3999.3	(4 ⁻)	2770.66	5-				
1252.6 2	11 3	5640.8	(10 ⁻)	4388.30	8-				
1268.1 <i>3</i>	≈7 ^{&}	6472.3		5204.19	10+				
1463.8 1	315 20	2345.45	4^+	881.61	2 ⁺	E2			
1543.7 3	51	3038.09	(5)	2095.08	4'				

4

From ENSDF

 $^{84}_{36}\mathrm{Kr}_{48}$ -4

 $^{84}_{36}{
m Kr}_{48}$ -4

⁸²Se(α ,2n γ) 1990Ro10,2006Sc22 (continued)

$\gamma(^{84}\text{Kr})$ (continued)

Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$
1546.0 2	20 4	4718.63	8+	3172.66 6+	Q	
1605.7 <i>3</i>	73	3951.29	6+	2345.45 4+		
1616.1 2	18 5	4852.30	9-	3236.17 8+	D	
1636.8 4	≈3 ^{&}	4407.5	(6 ⁻)	2770.66 5-		
1740 1	≈70 ^{&}	4976	(9+)	3236.17 8+		
1741.3 2	6.0 ^a 3	2622.93	2+	881.61 2+	D+Q	-1.5 + 5 - 10
1856.2 <i>3</i>	15 4	3951.29	6+	2095.08 4+	Q	
1897.8 <i>3</i>	35 4	1897.82	2+	$0.0 0^+$	E2	
1968.0 2	170 20	5204.19	10^{+}	3236.17 8+	E2	
2160.8 6	8 <i>3</i>	3042.6	$(2^+, 3, 4^+)$	881.61 2+		

[†] Additional information 1. [‡] At $E(\alpha)=27$ MeV. [#] From linear polarization and $\alpha(K)$ measurements. The $\alpha(K)$ are normalized to 0.00059 (E2, theory) for the 881 γ .

[@] From $\gamma(\theta)$.

[&] Estimated from coin measurement. ^{*a*} Determined at $E(\alpha)=12$ MeV.

^b Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{84}_{36}{
m Kr}_{48}$

6

⁸²Se(α,2nγ) 1990Ro10,2006Sc22

 $^{84}_{36}{
m Kr}_{48}$