Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh	ENSDF	09-Sep-2022		

 $Q(\beta^{-})=14054 \ 30; \ S(n)=2908 \ 30; \ S(p)=15090 \ SY; \ Q(\alpha)=-98404 \ SY$ 2021Wa16 Estimated uncertainties (2021Wa16): 300 for S(p) and Q(α).

 $Q(\beta^{-}n)=8811$ 30, S(2n)=7306 30, S(2p)=32940 400 (syst) (2021Wa16). $Q(\beta^{-}2n)=5180$ 30 (deduced by evaluator from mass excesses in 2021Wa16).

1991Kr15: ⁸⁴Ga produced and identified in ²³⁸U(p,F),E=600 MeV, followed by mass separation of fission products. Measured β -delayed neutrons, T_{1/2} and $\%\beta^-$ n from the decay of ⁸⁴Ga at CERN-ISOLDE facility.

2003Pe18, 2006Pe20: ²³⁸U(n,f), measured E γ , I γ , γ (t), $\gamma\gamma$ -coin, $\beta\gamma$ -coin following mass separation by ISOL method at the PARRNe facility in Orsay.

2009Le26 (also 2009Ve11): ⁸⁴Ga isotope produced in U(γ ,F),E=50 MeV reaction at PARRNe on-line mass separator within the ALTO facility. Bremsstrahlung beam was produced by 50-MeV electron beam hitting a UC_x target, followed by mass separation of fission fragments. Measured E γ , I γ , $\beta\gamma$ -coin. The authors propose an isomer based on the gamma intensities from ⁸⁴Ge β^- decay and ⁸⁴Ga β -delayed neutron decay.

Additional information 1.

2010Wi03 (also 2009Gr06): ⁸⁴Ga produced in ²³⁸U(p,F),E(p)=54 MeV reaction. Reaction products were accelerated to 225 MeV in the ORNL Tandem van de Graaff generator. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, (fragment) γ -coin, (ion-tagged γ -ray spectra), $\beta\gamma$ (ion)-coin, β n γ -coin using an array composed of four Ge clover and two plastic scintillator detectors. Comparison with spherical HFB calculations. No evidence was found for the existence of two isomers in ⁸⁴Ga, as was proposed in 2009Le26. 2010Wi03 state that 1046 γ is in ⁸³Ge, not in ⁸⁴Ge as was suggested by 2009Le26.

- 2013Ko32: ⁸⁴Ga produced in U(γ ,F),E=50 MeV, the bremsstrahlung beam was produced in 50 MeV (10 μ A) electron beam incident on a thick UC_x target. It was followed by selective photoionization using the ALTO resonant laser ion source. ⁸⁴Ga was then mass separated at the PARRNe online mass separator at IPN, Orsay facility, and implanted on Al-coated mylar tape. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin and T_{1/2} of ⁸⁴Ga isotope using two HPGe detectors and a plastic scintillator.
- 2016Ma50: ⁸⁴Ga isotope produced in the reaction U(p,F),E(p)=50 MeV, at the RIB-HRIBF-ORNL facility, where the ⁸⁴Ga radioactive ion beam was extracted, mass separated and transmitted to the Low Energy Radioactive Ion Beam Spectroscopy Station. Measured E γ , I γ , E(n), I(n), E(β), n β -coin using two HPGe detectors, the VANDLE array of 48 plastic scintillators for neutron time-of-flight measurements, and two plastic scintillators surrounding the implantation point for β particles. Deduced β -delayed neutron emission probability or P_n.
- 2017Ve01: radioactive ion beam of ⁸⁴Ga at 30 keV was produced in photofission of ²³⁸U using UC_x pellets containing about 60 g of ²³⁸U. The photons were created by 50-MeV primary electron beam bombarding a Ta target heated up to $\approx 2000^{\circ}$ C. The Ga atoms were ionized with the Resonant Ionization Laser Ion source (RILIS) using a two-step ionization system. Extracted 30 keV ion beam was delivered to PARRNe on-line separator at ALTO ISOL facility. Mass-separated ⁸⁴Ga beam was then sent to β -decay counting station BEDO where it was collected on mylar tape at the center of the detection system of 4π ³He neutron counter TETRA, an HPGe detector for γ radiation and plastic $4\pi\beta$ array for electrons. Measured E γ , I γ , β spectrum, β -gated γ and β (neutron)-gated γ spectra, delayed neutrons, $\%\beta^{-n}$ of ⁸⁴Ga decay for 17971 counting cycles in beam-off and beam-on collection/counting steps. The measurements reported in this work were a test case for the ³He neutron-counter TETRA installed behind the PARRNe mass separator at the electron-driven ALTO-ISOL facility. Experimental details are given in 2016Te09.
- 2019Yo03: ⁸⁴Ga produced in ⁹Be(²³⁸U,F),E(²³⁸U)=345 MeV/nucleon on a 4-mm thick ⁹Be target at the RIBF-RIKEN facility. Fragments separated and identified using the BigRIPS separator, then implanted into active stoppers consisting of double-sided silicon strip detectors. Measured E γ , I γ , E(n), I(n), n β -coin, T_{1/2}, $\%\beta^-$ n using two HPGe detectors for γ rays and the BRIKEN detector consisting of 140 ³He counters for neutrons.

Mass measurement: 2020Re04.

No evidence for an isomer with $T_{1/2} < 0.085$ s and $J^{\pi} = (3^-, 4^-)$ as proposed in 2009Le26.

In literature, there are no studies of decay of ⁸⁴Zn to ⁸⁴Ga, with an exception that 2014XuZZ report $T_{1/2}$ of decay of ⁸⁴Zn by $\beta(108.5\gamma)$ -coin method, implying that 108.5-keV γ ray possibly deexcites a level in ⁸⁴Ga.

Adopted Levels (continued)

⁸⁴Ga Levels

E(level)	J^{π}	T _{1/2}	Comments
0	(0 ⁻)	95.2 ms 24	 %β⁻=100; %β⁻n=46 5; %β⁻2n=1.6 2 (2019Yo03) %β⁻n: weighted average of 44 4 (2019Yo03, from sum of neutron intensity distribution normalized to the total number of decays observed, systematic uncertainty included); 53 20 (2017Ve01, from neutron and β activity measurement, also 51 28 in 2014TeZY); 40 7 (2016Ma50, from sum of the neutron intensity distribution normalized to the total number of decays observed); 74 14 (2010Wi03, from βγ-coin data, 80 15 in 2009Gr06, 47 10 in 2008WiZZ); 70 15 (1991Kr15, from neutron measurement). %β⁻2n: from 2019Yo03, sum of the two-neutron intensity distribution normalized to the total number of decays observed. T_{1/2}: unweighted average of 97.6 ms 12 (2019Yo03, from binned maximum likelihood fitting of βn(t) as 1n spectra including contributions from parent, daughter, β1n, and β2n daughter and a linear background); and 92.7 ms 7 (2014XuZZ, βγ-coin, also 91.2 ms 83 from analysis of β-decay curve). Others: 84 ms 7 (2013Ko32, from decay curve for 247.8γ, 75 ms 33 in 2009Ve11); 70 ms 35 (2006Pe20, from decay curve for γ rays); 85 ms 10 (1991Kr15, neutron-decay curve).

 J^{π} : 0⁻ assigned by 2009Le26 based on configuration of $\pi 1f_{5/2}^3 \otimes \nu 2d_{5/2}^3$ and Paar model.