		Туре	Author	•	History Citation	Literat	ture Cutoff Date			
		Full Evaluation	E. A. Mccu	tchan	NDS 125, 201 (2015)	31	1-Dec-2014			
$Q(\beta^{-})=-4593$ S(2n)=21412 Additional in: α : Additional	8 20; S(n)=885 8; S(2p)=1368 formation 1. information 2	9 9; S(p)=7899 81 7 (2012Wa38	7; $Q(\alpha) = -4780$	8 2	2012Wa38					
					⁸³ Sr Levels					
			Cro	oss Ref	ference (XREF) Flags					
		$\begin{array}{l} \mathbf{A} \ \ \overset{83}{8} \mathrm{Y} \ \varepsilon \ \mathrm{d} \\ \mathbf{B} \ \ \overset{83}{8} \mathrm{Y} \ \varepsilon \ \mathrm{d} \\ \mathbf{C} \ \ \overset{83}{8} \mathrm{Sr} \ \mathrm{IT} \\ \mathbf{D} \ \ \overset{58}{8} \mathrm{Ni}(^{29}) \end{array}$	lecay (7.08 min) lecay (2.85 min) decay Si,4pγ)) E) F G H	${}^{68}Zn({}^{19}F,p3n\gamma)$ ${}^{74}Ge({}^{12}C,3n\gamma)$ ${}^{80}Kr(\alpha,n\gamma),{}^{82}Kr(\alpha,3n\gamma)$ ${}^{84}Sr({}^{3}He,\alpha)$	I J	⁸⁴ Sr(d,t) (HI,xnγ):SD			
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF			Com	ments			
0.0	7/2+	32.41 h 3	ABCDEFG	$ \frac{9}{8} \frac{8}{6} \frac{8}{6} \frac{100}{12} $ $ \frac{9}{8} \frac{8}{6} \frac{8}{6} \frac{100}{12} $ $ \frac{9}{8} \frac{8}{6} \frac{100}{12} $ $ \frac{9}{8} \frac{100}{12} \frac{100}{12} $ $ \frac{9}{8} \frac{100}{12} \frac{100}{12} $ $ \frac{9}{8} \frac{100}{12} \frac{100}{12} \frac{100}{12} $ $ \frac{9}{8} \frac{100}{12} \frac{100}{12} \frac{100}{12} $ $ \frac{100}{12} \frac{100}{12} \frac{100}{12} \frac{100}{12} $ $ \frac{100}{12} $						
35.47 ^b 6	9/2+	<15 ns	A DEFGHI	 XREF: H(X)I(X). T_{1/2}: from pulsed beam measurement reported as a private communication in ⁸⁰Kr(α,nγ),⁸²Kr(α,3nγ). J^π: M1 35.5γ to 7/2⁺, L(³He,α)=L(d,t)=4, DWBA analysis of σ(
259.15 9	1/2-	4.95 s <i>12</i>	ABC E GHI	%IT= μ =+0 XREH J ^{π} : J= (19) T _{1/2} : μ : fro rela	2.100 3.581 4 F: H(X+233)I(X+250). =1/2 from collinear fast-be 87Bu11,1990Li28), π from from 1972Tu07. om collinear fast-beam LA ative to μ =-1.09282 65 fc 001 i28)	eam lase m L(³ H SER sp or ⁸⁷ Sr.	er spectroscopy e,α)=1. pectroscopy (1990Bh03, 2011StZZ), Other: μ =0.5809 <i>12</i> (CFBLS,			
489.92 8	(7/2 ⁻)		A HI	XRE	F: $H(X+487)I(X+470)$.	0/2+				
545.4 <i>3</i> 650.81 <i>14</i> 681.11 <i>22</i>	(3/2 ⁺ ,5/2 ⁻) (3/2 ⁻)		A A AB HI	J : L($J^{\pi}: 39$ XREF	$(u, t) = L(\pi e, \alpha) = 3, 4547$ to 22γ to $1/2^-$, 721γ from (7 F: H(X+649)I(X+680).	//2 ⁺).				
717.53 8	(7/2,9/2)		Α	\mathbf{J}^{π} : lo	g $ft=6.7$ from $9/2^+$ parent	228γ	to $(7/2^{-})$, 718 γ to $7/2^{+}$.			

Continued on next page (footnotes at end of table)

⁸³Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF	Comments
753.72 15	(5/2 ⁻)		AB	E	J^{π} : log ft=5.7 from 3/2 ⁻ parent; log ft=5.2 from 9/2 ⁺ to 1371-keV level and 618 γ between these levels suggests $J^{\pi}(754)=(5/2^{-})$ and $J^{\pi}(1371)=(7/2^{+})$.
790.83 17			Α	Н	XREF: H(X+768).
800.41 <i>10</i> 835.2 6	11/2+	3.7 ps +35-14	A	DEFG E	J ^{π} : E2 800 γ to 7/2 ⁺ , $\gamma(\theta)$ in ⁸⁰ Kr(α ,n γ), ⁸² Kr(α ,3n γ).
846.3 <i>3</i>	(7/2,9/2 ⁻)		A		J^{π} : log <i>ft</i> =7.8 (log $f^{4u}t=9.1$) from $9/2^+$ parent, 195 γ to $(3/2^+, 5/2^-)$.
894.15 <i>11</i>	11/2+	1.6 ps 6	A	DEFG	J ^{π} : M1+E2 859 γ to 9/2 ⁺ ; $\gamma(\theta)$ and excitation function in ⁸⁰ Kr(α ,n γ), ⁸² Kr(α ,3n γ).
910.5 ^b 5	13/2+	3.5 [@] ps 2		DEFG	$J_{1/2}$ given as a range with 1.0 ps < $I_{1/2}$ < 2.1 ps. J^{π} : E2 875 γ to 9/2 ⁺ , excitation function in ⁸⁰ Kr(α ,n γ), ⁸² Kr(α ,3n γ), band assignment.
951.77 8	(5/2 ⁺ ,7/2 ⁻)		A	h	T _{1/2} : other: 2.6 ps 10 from DSAM in 80 Kr(α ,n γ), 82 Kr(α ,3n γ). XREF: h(X+928).
962.79 7	(7/2,9/2,11/2 ⁺)		A	h	$J^{-1}: 2/17 \text{ to } (5/2), 91/7 \text{ to } 9/2^{+}.$ XREF: h(X+928). $I^{\pi_{1}} \log t = 6.5 \text{ from } 9/2^{+} \text{ parent } 9632 \text{ to } 7/2^{+}.$
1092.8 <i>3</i>			Α		J $10g_{11}=0.5$ from $9/2$ parent, 9037 to $7/2$.
1098.06 11			Α		
1140.71 25			Α		
1233.40 11	(7/2,9/2)		Α	hi	XREF: $h(X+1206)i(X+1230)$.
1239.19 <i>19</i>	(7/2,9/2,11/2 ⁺)		A	hi	$J^{n_1} \log f t = 0.3$ from $9/2^+$ parent, $7/44\gamma$ to $7/2^+$. XREF: h(X+1206)i(X+1230). $J^{n_1} \log f t = 6.7$ from $9/2^+$ parent, 1230a to $7/2^+$
1365.9.3	(7/2.9/2)		Α		J^{π} : log ft=7.0 from 9/2 ⁺ parent, 876y to (7/2 ⁻), 1366y to 7/2 ⁺ .
1371.98 6	$(7/2^+)$		Α		J^{π} : see comment on 754-keV level.
1434.12 19	(7/2,9/2)		A	HI	XREF: H(X+1375)I(X+1410). J ^{π} : log <i>ft</i> =6.9 from 9/2 ⁺ parent, 944 γ to (7/2 ⁻), 1434 γ to 7/2 ⁺ .
1447.8 8	(9/2 ⁻)			E	J^{π} : 694 γ to (5/2 ⁻), 659 γ from (13/2 ⁻).
1498.83 15	(7/2,9/2)		A		J ^{π} : log <i>ft</i> =6.2 from 9/2 ⁺ parent, 547 γ to (5/2 ⁺ ,7/2 ⁻), 1499 γ to 7/2 ⁺ .
1574.7 8	(9/2)+			EFG	J ^{<i>a</i>} : M1+E2 680 γ to 11/2 ⁺ , excitation function in ⁸⁰ Kr(α ,n γ), ⁸² Kr(α ,3n γ). However, (13/2 ⁻) is assigned in ⁶⁸ Zn(¹⁹ F,p3n γ).
1590.0 8				E	
1604.8 4	(7/2,9/2)		A		J^{π} : log ft=7.1 from 9/2 ⁺ parent, 1115 γ to (7/2 ⁻), 1605 γ to 7/2 ⁺ .
1745.4 8 1752.6 4	$(7/2,9/2,11/2^+)$ $(7/2,9/2,11/2^+)$		A A	HI	$J^{*}: \log ft = 1.2$ from $9/2^{+}$ parent, $1/45\gamma$ to $1/2^{+}$. XREF: H(X+1740)I(X+1750).
1856.8 5	15/2+			DEFG	J^{π} : log ft=6.7 from 9/2 ⁺ parent, 1753 γ to 7/2 ⁺ . J^{π} : M1+E2 946 γ to 13/2 ⁺ , excitation function in
1882.50 23	(7/2,9/2)		A	,	J^{π} : log $f_{t}=6.4$ from $9/2^{+}$ parent, 1392 γ to $(7/2^{-})$, 1882 γ to $7/2^{+}$.
1915.4 3	(7/2,9/2)		A	h	XREF: $h(X+1903)$. J^{π} : log <i>ft</i> =6.1 from 9/2 ⁺ parent, 1264 γ to (3/2 ⁺ ,5/2 ⁻), 1916 γ to 7/2 ⁺
1964.1 <i>4</i>	(7/2,9/2)		A	h	XREF: h(X+1903). J ^{π} : log ft=6.6 from 9/2 ⁺ parent, 1474 γ to (7/2 ⁻), 1965 γ to 7/2 ⁺ .
1987.6 ^b 8	17/2+	0.8 ps 2		DEFG	T _{1/2} : weighted average of 0.7 ps 2 from RDDM in 74 Ge(12 C,3n γ) and 1.0 ps 3 from DSAM in 80 Kr(α ,n γ), 82 Kr(α ,3n γ).
2017.0 5	(7/2,9/2)		A	Н	J^{π} : E2 1077 γ to 13/2 ⁺ , band assignment. XREF: H(X+1963).
2044.8 6	(13/2 ⁻)			DE	J [*] : log <i>ft</i> =6.7 from 9/2 ⁺ parent, 1527 γ to (7/2 ⁻), 2017 γ to 7/2 ⁺ . J ^{\pi} : 1244 γ to 11/2 ⁺ , 598 γ from 17/2 ⁻ .

Continued on next page (footnotes at end of table)

⁸³Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments			
2074.0 8 2089.7 8 2106.8 5 2373.2 6	(7/2,9/2) (7/2,9/2,11/2+) (13/2-) (7/2,9/2,11/2+)	<u> </u>	A A DEFG A	J ^{π} : log <i>ft</i> =6.9 from 9/2 ⁺ parent, 1584 γ to (7/2 ⁻), 2074 γ to 7/2 ⁺ . J ^{π} : log <i>ft</i> =6.9 from 9/2 ⁺ parent, 2090 γ to 7/2 ⁺ . J ^{π} : D 1213 γ to 11/2 ⁺ , 536 γ from 17/2 ⁻ . J ^{π} : log <i>ft</i> =6.5 from 9/2 ⁺ parent, 1001 γ to (7/2 ⁺).			
2539.3 6	(15/2)		DE	J^{π} : 433 γ to (13/2 ⁻), 1629 γ to 13/2 ⁺ , assumption of increasing spin in (HI,xn) reactions.			
2643.0 ^{<i>a</i>} 6	(17/2 ⁻)		DE	J ^{π} : 598 γ to (13/2 ⁻), similar to 3 quasi-particle J ^{π} =17/2 ⁻ bandheads in ⁸¹ Kr and ⁸³ Rb.			
2847.6 8 2905.2 3 2943.9 8 3009.2 9 3046.5 ^a 9 3116.8 ^b 11	$(17/2^{-}) (7/2^{+},9/2^{+},11/2^{+}) (7/2^{+},9/2^{+},11/2^{+}) (19/2^{+}) (19/2^{-}) 21/2^{+}$	<0.7 ps	E A E DE DEFG	J ^{π} : 308 γ to (15/2), 199 γ from (19/2 ⁻). J ^{π} : log <i>ft</i> =5.2 from 9/2 ⁺ parent. J ^{π} : log <i>ft</i> =5.6 from 9/2 ⁺ parent. J ^{π} : 1022 γ to 17/2 ⁺ , 1152 γ to 15/2 ⁺ . J ^{π} : 404 γ to (17/2 ⁻), band assignment. T _{1/2} : from RDDM in ⁷⁴ Ge(¹² C,3n γ).			
3349.9 <i>11</i> 3469.8 ^{<i>a</i>} <i>11</i> 3525.7 <i>9</i> 3644.3 ^{<i>c</i>} <i>12</i>	(21/2 ⁺) (21/2 ⁻) (21/2 ⁻) 23/2 ⁺	8.7 ps 4	E DE DE DEFG	J ^{<i>n</i>} : E2 1129 γ to 17/2 ⁺ , band assignment. J ^{<i>π</i>} : 1362 γ to 17/2 ⁺ , 294 γ from 23/2 ⁺ . J ^{<i>π</i>} : 424 γ to (19/2 ⁻), band assignment. J ^{<i>π</i>} : 480 γ to (19/2 ⁻), 882 γ to (17/2 ⁻). J ^{<i>π</i>} : M1+E2 528 γ to 21/2 ⁺ , excitation function in ⁸⁰ Kr(α ,n γ), ⁸² Kr(α ,3n γ).			
4043.8 ^{<i>a</i>} 12	(23/2 ⁻)		DE	$T_{1/2}$: from RDDM in ⁷⁴ Ge(¹² C,3n γ). J ^{π} : 573 γ to (21/2 ⁻), band assignment.			
4168.8° <i>13</i> 4195.4 <i>10</i> 4396.7 <i>13</i> 4633 7 <i>11</i>	$25/2^{+}$ (23/2 ⁻) (25/2 ⁺) (25/2 ⁻)		DE DE E DE	J [*] : 525 γ to 23/2 ⁺ , 1052 γ to 21/2 ⁺ , band assignment. J ^{\pi} : 726 γ to (21/2 ⁻), 1148 γ to (19/2 ⁻). J ^{\pi} : 752 γ to 23/2 ⁺ , 1280 γ to 21/2 ⁺ . I ^{\pi} : 590 γ to (23/2 ⁻), 1108 γ to (21/2 ⁻)			
4753.3 ^{<i>c</i>} 13 4948.2? 13	(12)/2) 27/2 ⁺ (⁻)		DE E	J^{π} : 585 γ to 25/2 ⁺ , 1109 γ to 23/2 ⁺ , band assignment. J ^{π} : from 1990DoZT, based on feeding and decay pattern from and to only negative parity levels.			
5091.8 <i>14</i> 5208.6 ^{<i>a</i>} <i>12</i>	(27/2 ⁺) (27/2 ⁻)		E DE	J^{π} : 695 γ to (25/2 ⁺). J^{π} : 575 γ to (25/2 ⁻), 1164 γ to (23/2 ⁻), band assignment.			
5380.0 ^b 14 5394.6 12	29/2 ⁺ (⁻)		DE E	J ^{π} : 627 γ to 27/2 ⁺ , 1211 γ to 25/2 ⁺ , band assignment. J ^{π} : from 1990DoZT, based on decay pattern to only negative parity levels.			
5612.9 <i>14</i> 5856.6 <i>13</i> 6205.8 ^c <i>14</i> 6428.6 ^a <i>16</i>	(29/2 ⁺) (29/2 ⁻) 31/2 ⁺ (31/2 ⁻)		E DE DE DE	J ^{π} : 860 γ to 27/2 ⁺ , possible 1216 γ to (25/2 ⁺). J ^{π} : 647 γ to (27/2 ⁻), 1224 γ to (25/2 ⁻). J ^{π} : 826 γ to 29/2 ⁺ , 1452 γ to 27/2 ⁺ , band assignment. J ^{π} : 1220 γ to (27/2 ⁻), band assignment.			
6753.9 ^b 15 7102.9? 17 7235.7? 17	33/2+		DE E E	J ^{π} : 548 γ to 31/2 ⁺ , 1374 γ to 29/2 ⁺ , band assignment.			
7740.0 ^a 18 7771.6 19 7798.0 18	(35/2 ⁻)		DE D D	J ^{π} : 1312 γ to (31/2 ⁻), band assignment.			
7806.8 ^{&} 18 7854.8 ^c 16	(35/2 ⁻) 35/2 ⁺		D D	J^{π} : 1378 γ to (31/2 ⁻). J^{π} : 1649 γ to 31/2 ⁺ , band assignment.			
9190.0 21 9277 44 19	$(20/2^{-})$		DE D	J. 2007 to $35/2^{\circ}$, $130/7$ to $35/2^{\circ}$, band assignment.			
9290.4 ^{&} 18 9352.6 21 9468.6 21	(39/2))		DE D D	J^{π} : 1484 γ to (35/2 ⁻), band assignment. J ^{π} : 1484 γ to (35/2 ⁻), band assignment.			
9650.9 ^b 19	41/2+		DE	J^{π} : 1530 γ to 37/2 ⁺ , band assignment.			

Continued on next page (footnotes at end of table)

⁸³Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
9782.8 ^c 19	39/2+	D	J^{π} : 1928 γ to 35/2 ⁺ , band assignment.
10860.4 ^{&} 20	$(43/2^{-})$	D	J^{π} : 1570 γ to (39/2 ⁻), band assignment.
10952.4 ^{<i>a</i>} 20	$(43/2^{-})$	D	J^{π} : 1675 γ to (39/2 ⁻), band assignment.
11104.6 23		D	
11462.90 22	45/2+	DE	J^{π} : 1812 γ to 41/2 ⁺ , band assignment.
11857.9 22		D	
$1256/.4^{\circ} 20$ 12847 54 22	(47/2)	D	J^{n} : 1/0/ γ to (43/2), band assignment. I^{π} : 1805 α to (42/2 ⁻) band assignment
12047.5 22	(47/2)	ע	\overline{J} : 1055 y to (45/2), band assignment.
14131 9 24	49/2	ם ח	J^{*} . 1904 y to $43/2^{*}$, band assignment.
14296.9 24		D	
14344.5 ^{&} 23	$(51/2^{-})$	D	J^{π} : 1777 γ to (47/2 ⁻), band assignment.
14899.5 ^a 24	$(51/2^{-})$	D	J^{π} : 2052 γ to (47/2 ⁻), band assignment.
15540 3		D	
15756 ^b 3	53/2+	D	J^{π} : 2329 γ to 49/2 ⁺ , band assignment.
16224 3	(55/0-)	D	
16612.5 ^{cc} 25	(55/2)	D D	$J^{\prime\prime}$: 2268 γ to (51/2), band assignment.
19437 & 3	$(59/2^{-})$	ע	$I^{\pi_{1}}$ 2824 γ to (55/2 ⁻) hand assignment
$\frac{1}{v^d}$	$(37/2^{-1})$ I~(41/2)	۔ ۱	I^{π} : $\sim (41/2)$ estimated (1995Ba26 1995La21 2003Le08) (within one unit of spin)
А	J~(+1/2)	J	from depopulation into the highest spin states $(45/2^+, 39/2^-)$ of normal-deformed
			bands in ⁸³ Sr (see 1995La21 and 1992WiZU for normal high-spin states above
			23/2).
			E(level): 13.0 MeV 15 (1995La21).
$x \pm 1305 0^{d} 10$	I ⊥ 2	1	Additional Information 5.
x+1305.0 10 $x+2766.0^{d}$ 14	J+∠ I⊥∕I	י ו	
x+2700.0 14 $x+4379.0^{d}$ 17	J+ 4 I+6	י ו	
$x + 6141 1^{d} 20$	I+8	1	
$x+8053.1^{d}$ 22	J+10	1	
$x+10113.1^{d}$ 24	J+12	1	
$x+12318^{d}$ 3	J+14]	
x+14665 ^d 3	J+16	J	
x+17156 ^d 3	J+18	J	
x+19802? ^d 3	J+20	J	

[†] From a least-squares fit to $E\gamma$, by evaluator. An uncertainty of $\Delta E\gamma = 1$ keV is assumed when not explicitly given.

[‡] For levels populated in (HI,xn) reactions, J^{π} assignments include the assumption of increasing spin with increasing excitation energy, except where noted.

- [#] From DSAM in 80 Kr(α , $\eta\gamma$), 82 Kr(α , $3\eta\gamma$), except where noted. [@] From RDDM in 74 Ge(12 C, $3\eta\gamma$).
- & Band(A): Rotational band based on 7807-keV, (35/2⁻) level.
- ^a Band(B): Rotational band based on 2643-keV, (17/2⁻) level.
- ^b Band(C): Rotational band based on 35.5-keV, 9/2⁺ level.
- ^c Band(D): Rotational band based on 3644-keV, 23/2⁺ level.

^d Band(E): SD band (2003Le08,1995Ba26,1995La21). Q(transition)=3.60 +20-18 (2003Le08), 3.5 +8-6 (1997De51, reanalyzed data

⁸³Sr Levels (continued)

of 1995La21). Configuration= $\nu 5^{1}\pi 5^{0}$ (2003Le08); $\nu 5^{3}\pi 5^{1}$; $\pi = +$, $\alpha = +1/2$; $\beta_{2} \approx 0.57$, $\gamma \approx 0^{\circ}$ (from experimental values of moments of inertia,1995La21). Percent population=1.36 (2003Le08), 1.4 5 (1995Ba26).

					Ado]	pted Levels	, Gammas (continued)	
							$\gamma(^{83}Sr)$		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^a	δ^{a}	α	Comments
35.47	9/2+	35.5 1	100	0.0	7/2+	M1 [‡]		3.13	$\alpha(K)=2.75 \ 5; \ \alpha(L)=0.320 \ 6; \ \alpha(M)=0.0539 \ 9; \\ \alpha(N)=0.00670 \ 11; \ \alpha(O)=0.000420 \ 7 \\ R(M1)(W,u)>0.0078$
259.15	1/2-	259.1 <i>1</i>	100	0.0	7/2+	E3		0.1416	$\alpha(M)(W.d.) > 0.0078$ $\alpha(K)=0.1192 \ 17; \ \alpha(L)=0.0188 \ 3; \ \alpha(M)=0.00319 \ 5; \ \alpha(N)=0.000373 \ 6; \ \alpha(O)=1.636\times10^{-5} \ 23$ $B(E3)(W.u.)=0.00670 \ 17$ Mult : from $\alpha(K)$ ave in 83 Sr IT decay
489.92	(7/2 ⁻)	454.4 <i>2</i> 489.9 ^b 2	43.3 <i>11</i> 100.0 ^b 22	35.47 0.0	9/2 ⁺ 7/2 ⁺				
545.4		545.4 <i>3</i>	100	0.0	7/2+				
650.81	$(3/2^+, 5/2^-)$	391.6 2	100	259.15	1/2-				
681.11 717 53	$(3/2^{-})$ (7/2, 0/2)	421.8 3	100	259.15	$1/2^{-}$				
/1/.33	(7/2,9/2)	682.1.1	100 5	469.92	(1/2) $9/2^+$				
		717.6 2	36.5 15	0.0	$7/2^+$				
753.72	$(5/2^{-})$	494.5 2	100	259.15	$1/2^{-}$				
790.83		790.8 2	100	0.0	$7/2^{+}$				
800.41	11/2+	764.9 <i>6</i> 800.4 <i>1</i>	80 <i>10</i> 100 <i>6</i>	35.47 0.0	9/2 ⁺ 7/2 ⁺	E2		9.93×10 ⁻⁴	I _y : other: 47 in 80 Kr(α ,n γ), 82 Kr(α ,3n γ). α (K)=0.000878 <i>13</i> ; α (L)=9.67×10 ⁻⁵ <i>14</i> ; α (M)=1.623×10 ⁻⁵ <i>23</i> ; α (N)=2.03×10 ⁻⁶ <i>3</i> α (O)=1.296×10 ⁻⁷ <i>19</i> P(E2)(W ₁)=12+7.6
025 D		<u>800</u> @		25 17	$0/2^{+}$				D(E2)(W.u.) = 12 + 7 = 0
033.2		800 835 <mark>@</mark>		0.0	2/2 7/2+				
846 3	$(7/2, 9/2^{-})$	19544	100	650.81	$(3/2^+ 5/2^-)$				
894.15	11/2+	858.7 1	100 4	35.47	(3/2 ⁺ ,3/2 ⁺) 9/2 ⁺	M1+E2	-0.83 13	7.99×10 ⁻⁴	α (K)=0.000708 <i>11</i> ; α (L)=7.69×10 ⁻⁵ <i>12</i> ; α (M)=1.292×10 ⁻⁵ <i>21</i> ; α (N)=1.621×10 ⁻⁶ <i>25</i>
									α (O)=1.055×10 ⁻⁷ 16 B(E2)(W.u.)=14 6; B(M1)(W.u.)=0.012 5
									δ: other: $-0.78 \ 30 \ \text{from}^{-74} \text{Ge}(^{12}\text{C}, 3n\gamma)$.
		893.9 4	3.5 8	0.0	7/2+	[E2]		7.55×10 ⁻⁴	$\alpha(\mathbf{K}) = 0.000668 \ 10; \ \alpha(\mathbf{L}) = 7.32 \times 10^{-5} \ 11; \\ \alpha(\mathbf{M}) = 1.228 \times 10^{-5} \ 18; \ \alpha(\mathbf{N}) = 1.537 \times 10^{-6} \ 22 \\ (\Omega) \ 0.99 \times 10^{-8} \ 14$
									$\alpha(0) = 9.88 \times 10^{\circ} 14$ B(E2)(Wu) = 1.0.5
910 5	13/2+	875 0 <mark>&</mark>	100	35 47	9/2+	E2		7 96×10 ⁻⁴	$\alpha(K) = 0.000704 \ 10^{\circ} \ \alpha(L) = 7.72 \times 10^{-5} \ 11^{\circ}$
,10.5	15/2	075.0	100	55.77	<i>/14</i>	12		1.90/10	$\alpha(M) = 1.295 \times 10^{-5} \ 19; \ \alpha(N) = 1.621 \times 10^{-6} \ 23$ $\alpha(O) = 1.040 \times 10^{-7} \ 15$
051 77	(5/2+7/2-)	23/ / 2	376	717 52	(2)				B(E2)(W.u.)=14.6 9
751.//	(3/2, 7/2)	234.4 J 270 5 3	395	681 11	(1/2, 3/2) $(3/2^{-})$				
				((() () () () () () () () ()					

6

From ENSDF

 $^{83}_{38}{
m Sr}_{45}$ -6

L

	Adopted Levels, Gammas (continued)													
	γ ⁽⁸³ Sr) (continued)													
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	$\mathbf{J}_{f}^{\pmb{\pi}}$	Mult. ^a	δ^{a}	α	Comments					
951.77	$(5/2^+, 7/2^-)$	951.8 <i>I</i>	100 5	0.0	7/2+									
962.79	$(7/2,9/2,11/2^+)$	245.3 4	7.2 22	717.53	(7/2,9/2)									
		927.3 1	100 5	35.47	9/2+									
		962.8 <i>1</i>	61 4	0.0	7/2+									
1092.8		603.0 3	100 20	489.92	$(7/2^{-})$									
1009.06		1092.4 6	100 30	0.0	7/2 ⁺									
1098.06		1062.6 1	100 33	35.47	9/2 ⁺ 7/2 ⁺									
1140 71		1097.2 0 1097.2 0	100	650.91	(2/2 + 5/2)									
1140.71	(7/2 0/2)	469.9 2	100 5	480.02	(3/2, 3/2)									
1255.40	(1/2,9/2)	1197.9.2	30.3	409.92 35.47	$9/2^+$									
		1233.3 6	5.1 10	0.0	$7/2^+$									
1239.19	$(7/2, 9/2, 11/2^+)$	1203.6 5	12.1 22	35.47	9/2+									
		1239.2 2	100 4	0.0	7/2+									
1365.9	(7/2,9/2)	875.8 <i>3</i>	100 17	489.92	$(7/2^{-})$									
1271.00	(7/0+)	1366.4 6	34 10	0.0	$7/2^+$									
13/1.98	$(1/2^{+})$	138.8 4	1.6 2	1233.40	(1/2,9/2) (2)(2,11/2+)									
		409.3 4	1.1 2 29 2 20	902.79 951 77	(7/2,9/2,11/2) $(5/2^+,7/2^-)$									
		525.6 4	1.2.3	846.3	$(7/2,9/2^{-})$									
		581.1 <i>3</i>	2.3 3	790.83										
		618.2 2	9.7 7	753.72	$(5/2^{-})$									
		654.5 2	3.1 3	717.53	(7/2,9/2)									
		721.2 2	16.8 7	650.81	$(3/2^+, 5/2^-)$									
		827	100 0 25	545.4 480.02	$(7/2^{-})$									
		1336 5 1	49.0.20	409.92	(<i>1</i> /2) 9/2 ⁺									
		1371.9 1	16.0.8	0.0	$7/2^+$									
1434.12	(7/2, 9/2)	943.6 5	26.8	489.92	$(7/2^{-})$									
		1434.2 2	100 9	0.0	7/2+									
1447.8	$(9/2^{-})$	694 [@]	100	753.72	$(5/2^{-})$									
1498.83	(7/2,9/2)	547.1 <i>3</i>	62 12	951.77	$(5/2^+, 7/2^-)$									
		1463.4 <i>3</i>	100 12	35.47	9/2+									
		1498.8 2	93 8	0.0	7/2+									
1574.7	(9/2)+	679.9 ^{&}	100	894.15	11/2+	M1+E2	+1.9 4	0.00147 3	$\alpha(K)=0.00130 \ 3; \ \alpha(L)=0.000144 \ 3;$ $\alpha(M)=2.42\times10^{-5} \ 5; \ \alpha(N)=3.02\times10^{-6} \ 7;$ $\alpha(O)=1.92\times10^{-7} \ 4$ δ : other: +1.1 +5-10 in ⁷⁴ Ge(¹² C,3n\gamma).					
1590.0		755 [@]	100	835.2										
1604.8	(7/2,9/2)	1115.0 5	100 30	489.92	$(7/2^{-})$									
		1604.6 8	72 20	0.0	7/2+									
1745.4	$(7/2, 9/2, 11/2^+)$	1710.0 15	56 28	35.47	9/2+									

 \neg

	Adopted Levels, Gammas (continued)													
	γ ⁽⁸³ Sr) (continued)													
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^a	δ^{a}	α	Comments					
1745.4 1752.6	$(7/2,9/2,11/2^+)$ $(7/2,9/2,11/2^+)$	1745.3 9 1717.0 8 1752.6 4	100 29 22 7 100 16	0.0 35.47 0.0	7/2 ⁺ 9/2 ⁺ 7/2 ⁺									
1856.8	15/2+	945.9 ^{&}		910.5	13/2+	M1+E2	+0.9 6	6.43×10 ⁻⁴ 14	α(K)=0.000570 12; α(L)=6.18×10-5 16; α(M)=1.04×10-5 3; α(N)=1.30×10-6 3; α(O)=8.49×10-8 15 δ: from γ(θ) in 74Ge(12C,3nγ). Mult.: D+Q from γ(θ) in 74Ge(12C,3nγ) and 80Kr(α,nγ),82Kr(α,3nγ), non-zero value of δ makes E1+M2 unlikely.					
1882.50	(7/2,9/2)	963 [#] 1056 [#] 931.5 5 1392.4 <i>3</i>	68 <i>18</i> 100 <i>9</i>	894.15 800.41 951.77 489.92	11/2 ⁺ 11/2 ⁺ (5/2 ⁺ ,7/2 ⁻) (7/2 ⁻)									
1915.4	(7/2,9/2 ⁻)	1846.8 <i>5</i> 1882.2 <i>8</i> 1264.3 <i>4</i> 1879.8 <i>7</i>	55 14 32 14 36 6 48 10	35.47 0.0 650.81 35.47	9/2 ⁺ 7/2 ⁺ (3/2 ⁺ ,5/2 ⁻) 9/2 ⁺									
1964.1	(7/2,9/2)	1915.7 <i>4</i> 1473.8 <i>6</i> 1928 <i>2</i> 1964.5 <i>6</i>	100 <i>12</i> 87 <i>16</i> 32 <i>16</i> 100 <i>16</i>	0.0 489.92 35.47 0.0	7/2 ⁺ (7/2 ⁻) 9/2 ⁺ 7/2 ⁺									
1987.6	17/2+	1077.1 ^{&}	100	910.5	13/2+	E2		4.88×10 ⁻⁴	$\alpha(\mathbf{K})=0.000432 \ 6; \ \alpha(\mathbf{L})=4.70\times10^{-5} \ 7; \\ \alpha(\mathbf{M})=7.88\times10^{-6} \ 11; \ \alpha(\mathbf{N})=9.89\times10^{-7} \ 14; \\ \alpha(\mathbf{O})=6.41\times10^{-8} \ 9 \\ P(\mathbf{F}2)(\mathbf{V};\mathbf{v})=23 \ 6 $					
2017.0	(7/2,9/2)	1527.2 <i>10</i> 2016.9 6	34 <i>10</i> 100 <i>16</i>	489.92 0.0	(7/2 ⁻) 7/2 ⁺				D(E2)(w.u.) - 25.0					
2044.8	(13/2 ⁻)	1134 [#] 1151 [#] 1244 [#]		910.5 894.15 800.41	$13/2^+$ $11/2^+$ $11/2^+$									
2074.0	(7/2,9/2)	1584.3 <i>10</i> 2073.6 <i>12</i>	70 <i>30</i> 100 <i>40</i>	489.92 0.0	$(7/2^{-})$ $7/2^{+}$									
2089.7	(7/2,9/2,11/2 ⁺)	2054.1 <i>12</i> 2089.8 <i>10</i>	100 <i>30</i> 60 <i>30</i>	35.47 0.0	9/2 ⁺ 7/2 ⁺									
2106.8	(13/2 ⁻)	517 [@] 659 [@] 1197 [@] 1213.3 ^{&}		1590.0 1447.8 910.5 894.15	(9/2 ⁻) 13/2 ⁺ 11/2 ⁺	(E1)		2.26×10 ⁻⁴	$\alpha(K)=0.0001545\ 22;\ \alpha(L)=1.646\times10^{-5}\ 23;$					
					,	. /								

 ∞

L

From ENSDF

					Adopted Leve	els, Gamn	nas (continued			
					$\gamma(^{83}$	³ Sr) (conti	nued)			
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. ^a	α	Comments		
								α (M)=2.76×10 ⁻⁶ 4; α(N)=3.47×10 ⁻⁷ 5; α(O)=2.28×10 ⁻⁸ 4 Mult.: D from γ(θ) in ⁷⁴ Ge(¹² C,3nγ), Δπ=yes from level scheme.		
2373.2	$(7/2, 9/2, 11/2^+)$	1001.2 6	100	1371.98	$(7/2^+)$					
2539.3	(15/2)	433 [#]		2106.8	$(13/2^{-})$					
		964 [@] c		1574.7	$(9/2)^+$					
		1629 [#]		910.5	13/2+					
2643.0	$(17/2^{-})$	104 [#]		2539.3	(15/2)					
		537 [#]		2106.8	$(13/2^{-})$					
		598 [#]		2044.8	$(13/2^{-})$					
		655 [#]		1987.6	$17/2^{+}$					
		786 [#]		1856.8	$15/2^+$					
2847.6	$(17/2^{-})$	205 [@]		2643.0	$(17/2^{-})$					
	(308 [@]		2539.3	(15/2)					
2905.2	$(7/2^+, 9/2^+, 11/2^+)$	1407.1 10	15 4	1498.83	(7/2,9/2)					
		1532.2 10	94	1371.98	$(7/2^+)$					
		1942.3 10	13 4	962.79	$(7/2,9/2,11/2^+)$					
		2011.1.5	56 9 20 5	894.15	$\frac{11}{2}$					
		2104.9.8	15.6	717.53	(7/2,9/2)					
		2869.6 15	20 6	35.47	9/2 ⁺					
		2905.3 9	100 12	0.0	7/2+					
2943.9	$(7/2^+, 9/2^+, 11/2^+)$	2049.0 15	178	894.15	$11/2^+$					
		2909 2	16 8	35.47	9/2 ⁺					
2000.2	$(10/2^{+})$	$2944.0\ 10$	100 12	1097.6	17/2					
3009.2	(19/2)	1022		1967.0	17/2 15/2 ⁺					
2016 5	$(10/2^{-})$	100@		1030.0	$(17/2^{-})$					
5040.5	(19/2)	199		2647.0	(17/2)					
2116 0	21/2+	404" 1120 4 &	100	2043.0 1087.4	(1/2)	БJ	4 41×10-4	$\alpha(K) = 0.000280.6, \alpha(L) = 4.00\times10^{-5}.6, \alpha(M) = 7.00\times10^{-6}.10$		
3110.8	21/2	1129.4	100	1987.0	17/2	E2	4.41×10	$\alpha(\mathbf{K}) = 0.000389 \ 0; \ \alpha(\mathbf{L}) = 4.22 \times 10^{-5} \ 0; \ \alpha(\mathbf{M}) = 7.08 \times 10^{-5} \ 10; \ \alpha(\mathbf{M}) = 8.8 \times 10^{-7} \ 13; \ \alpha(\mathbf{O}) = 5.77 \times 10^{-8} \ 8$		
								$B(E_2)(W.u.) > 20$		
								Mult.: Q from $\gamma(\theta)$ in ⁷⁴ Ge(¹² C,3n γ) and		
								80 Kr(α ,n γ), 82 Kr(α ,3n γ), M2 excluded by comparison to RUL.		
3349.9	$(21/2^+)$	233 [@]		3116.8	$21/2^+$					
		1362 [@]		1987.6	$17/2^{+}$					

9

From ENSDF

 $^{83}_{38}{
m Sr}_{45}$ -9

н

	Adopted Levels, Gammas (continued)													
							$\gamma(^{83})$	Sr) (continu	ued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^a	δ^{a}	α	Comments					
3525.7	(21/2 ⁻)	480 [#] 882 [#]		3046.5 2643.0	$(19/2^{-})$ $(17/2^{-})$									
3644.3	$23/2^{+}$	294 [#]		3349.9	$(21/2^+)$									
		527.9 ^{&}		3116.8	21/2+	M1+E2	-0.14 4	0.00233	α(K)=0.00206 3; α(L)=0.000225 4; α(M)=3.78×10-5 6; α(N)=4.75×10-6 7; α(O)=3.10×10-7 5 Mult.: D+Q from γ(θ) in 74Ge(12C,3nγ) and 80Kr(α,nγ),82Kr(α,3nγ); E1+M2 excluded by comparison to RUL. δ: from γ(θ) in 74Ge(12C,3nγ).					
4043.8	$(23/2^{-})$	573 [#]	100	3469.8	$(21/2^{-})$									
4168.8	25/2+	525 [#] 1052 [#]		3644.3 3116.8	23/2 ⁺ 21/2 ⁺									
4195.4	$(23/2^{-})$	670 [#]		3525.7	$(21/2^{-})$									
		726 [#]		3469.8	$(21/2^{-})$									
		1148#		3046.5	$(19/2^{-})$									
4396.7	$(25/2^+)$	752 [@]		3644.3	$23/2^+$									
		1280 ^w		3116.8	$21/2^+$									
4633.7	$(25/2^{-})$	590 "		4043.8	$(23/2^{-})$									
		1108^{π}		3525.7	$(21/2^{-})$									
1752.0	27/24	1165 @0		3469.8	$(21/2^{-})$									
4753.3	27/21	585"		4168.8	25/21									
40.40.00	(-)	1109"		3644.3	$\frac{23}{2}$									
4948.2?	()	904 °		4045.8	(25/2)									
5208.6	$(27/2^{-})$	260^{0}		4390.7	(23/2)									
5208.0	(27/2)	200 575 #		4940.21	() $(25/2^{-})$									
		1164 [#]		4043.8	$(23/2^{-})$									
5380.0	29/2+	627 [#]		4753.3	(23/2)									
5500.0	27/2	1211#		4168.8	27/2 $25/2^+$									
5394.6	(-)	1199@		4195.4	$(23/2^{-})$									
000 110		1351@		4043.8	$(23/2^{-})$									
5612.9	$(29/2^+)$	521 [@]		5091.8	$(27/2^+)$									
		860 [@]		4753.3	$27/2^{+}$									
		1216 [@] c		4396.7	$(25/2^+)$									
5856.6	$(29/2^{-})$	647 [#]		5208.6	$(27/2^{-})$									
	/	1224 [#]		4633.7	$(25/2^{-})$				E_{γ} : other: 1220 in 68 Zn(19 F,p3n γ).					
6205.8	31/2+	593 [@]		5612.9	(29/2+)									

10

 $^{83}_{38}{
m Sr}_{45}$ -10

L

From ENSDF

⁸³₃₈Sr₄₅-10

						Adopted Levels, Gammas (continued)									
						γ (⁸³ Sr) (continued)									
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$				
6205.8	31/2+	826 [#]		5380.0	29/2+	11462.9	45/2+	1812 [#]		9650.9	$41/2^{+}$				
		1114 [@] c		5091.8	$(27/2^+)$	11857.9		2207 [#]	100	9650.9	$41/2^{+}$				
		1452 [#]		4753.3	$27/2^+$	12567.4	$(47/2^{-})$	1615 [#]		10952.4	$(43/2^{-})$				
6428.6	$(31/2^{-})$	1220 [#]	100	5208.6	$(27/2^{-})$			1707 [#]		10860.4	$(43/2^{-})$				
6753.9	$33/2^{+}$	548 [#]		6205.8	$31/2^{+}$	12847.5	$(47/2^{-})$	1895 [#]	100	10952.4	$(43/2^{-})$				
		1374 [#]		5380.0	$29/2^{+}$	13426.9	$49/2^{+}$	1964 [#]	100	11462.9	$45/2^{+}$				
7102.9?		1490 [@] c	100	5612.9	$(29/2^+)$	14131.9		2274 [#]	100	11857.9					
7235.7?		1379 [@] c	100	5856.6	$(29/2^{-})$	14296.9		2834 [#]	100	11462.9	$45/2^{+}$				
7740.0	(35/2 ⁻)	1312 [#]	100	6428.6	$(31/2^{-})$	14344.5	$(51/2^{-})$	1777 <mark>#</mark>	100	12567.4	$(47/2^{-})$				
7771.6		1343 [#]	100	6428.6	$(31/2^{-})$	14899.5	$(51/2^{-})$	2052 [#]	100	12847.5	$(47/2^{-})$				
7798.0		1369 [#]	100	6428.6	$(31/2^{-})$	15540		2113 [#]	100	13426.9	49/2+				
7806.8	$(35/2^{-})$	1378 [#]	100	6428.6	$(31/2^{-})$	15756	53/2+	2329 [#]	100	13426.9	49/2+				
7854.8	35/2+	1649 [#]	100	6205.8	31/2+	16224		2797 <mark>#</mark>	100	13426.9	49/2+				
8120.8	$37/2^{+}$	266 [#]		7854.8	$35/2^+$	16612.5	$(55/2^{-})$	2268 [#]	100	14344.5	$(51/2^{-})$				
		1367 <mark>#</mark>		6753.9	33/2+	18116		2576 [#]	100	15540					
9190.0		1392 [#]	100	7798.0		19437	$(59/2^{-})$	2824 [#]	100	16612.5	(55/2-)				
9277.4	(39/2 ⁻)	1470 [#]		7806.8	$(35/2^{-})$	x+1305.0	J+2	1306 1	100	х	J≈(41/2)				
		1538 <mark>#</mark>		7740.0	$(35/2^{-})$	x+2766.0	J+4	1461 <i>1</i>	100	x+1305.0	J+2				
9290.4	(39/2 ⁻)	1484 [#]		7806.8	$(35/2^{-})$	x+4379.0	J+6	1613 <i>1</i>	100	x+2766.0	J+4				
		1492 [#]		7798.0		x+6141.1	J+8	1762 <i>1</i>	100	x+4379.0	J+6				
9352.6		1581 [#]	100	7771.6		x+8053.1	J+10	1912 <i>1</i>	100	x+6141.1	J+8				
9468.6		1697 [#]	100	7771.6		x+10113.1	J+12	2060 1	100	x+8053.1	J+10				
9650.9	$41/2^{+}$	1530 [#]	100	8120.8	37/2+	x+12318	J+14	2205 1	100	x+10113.1	J+12				
9782.8	39/2+	1928 <mark>#</mark>	100	7854.8	35/2+	x+14665	J+16	2347 1	100	x+12318	J+14				
10860.4	$(43/2^{-})$	1570 [#]	100	9290.4	$(39/2^{-})$	x+17156	J+18	2491 <i>1</i>	100	x+14665	J+16				
10952.4	$(43/2^{-})$	1675 [#]	100	9277.4	(39/2 ⁻)	x+19802?	J+20	2646 ^C	100	x+17156	J+18				
11104.6		1752 [#]	100	9352.6											

[†] From ⁸³Y ε decay (7.08 min), except where noted. [‡] From ce data in ⁸³Y ε decay (7.08 min). [#] From ⁵⁸Ni(²⁹Si,4p γ). [@] From ⁶⁸Zn(¹⁹F,p3n γ). [&] From ⁸⁰Kr(α ,n γ),⁸²Kr(α ,3n γ). ^a From $\gamma(\theta)$ and linear polarization measurements in ⁸⁰Kr(α ,n γ),⁸²Kr(α ,3n γ), except where noted.

 $\gamma(^{83}Sr)$ (continued)

^b Multiply placed with intensity suitably divided.
 ^c Placement of transition in the level scheme is uncertain.

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 1100 1100 (25/2-) 4633.7 1280 252 $(25/2^+)$ 4396.7 $(23/2^{-})$ 4195.4 -8 25/2+ 4168.8 53 $(23/2^{-})$ 4043.8 57.9 MI42 23/2+ <u>3644.3</u> 8.7 ps 4 ومح 980 (21/2⁻) 2 3525.7 - 130" - 1 - 130" - 1 - 130" - 1 $(21/2^{-})$ 3469.8 1362 $(21/2^+)$ 3349.9 $\frac{21/2^+}{(19/2^-)}$ ŝ 3116.8 <0.7 ps ^ 6 S. 6 3046.5 3009.2 005 ¥. $(19/2^+)$ $\frac{(1)/2}{(7/2^+,9/2^+,11/2^+)}$ $\frac{(1)/2}{(17/2^-)}$ 2943.9 2847.6 $(17/2^{-})$ 2643.0 17/2+ <u>1987.6</u> 0.8 ps 2 15/2+ 1856.8 $11/2^+$ 894.15 1.6 ps 6 $\frac{9/2^+}{7/2^+}$ 35.47 ${<}15 \ ns$ 32.41 h 3

 $^{83}_{38}{
m Sr}_{45}$

 $^{83}_{38}{
m Sr}_{45}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{83}_{38}{
m Sr}_{45}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

