		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 125, 201 (2015)	31-Dec-2014

Parent: ⁸³As: E=0.0; $J^{\pi}=(5/2^{-})$; $T_{1/2}=13.4$ s 4; $Q(\beta^{-})=5671$ 4; $\%\beta^{-}$ decay=100.0

1975Kr08: ⁸³As activity from thermal neutron induced fission of ²³⁵U and ²³³U followed by chemical separation. Measured E γ , I γ , $\gamma\gamma$ using two Ge(Li) detectors.

1982Me01,1984LiZW: ⁸³As activity from fission products followed by chemical separation. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma$ (t) using Ge(Li) detectors. 1984LiZW is a thesis describing in more detail the results presented in 1982Me01.

Others: 1989WaZV, 1974KrZG, 1968De19.

The decay scheme is incomplete and/or there are problems with the decay scheme normalization (see comment on I γ normalization. For this reason, β -feedings and log *ft* values are not derived for this dataset.

I γ normalization: Additional information 2.

Additional information 1.

 α : Additional information 3.

⁸³Se Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	9/2+	22.3 min 2	
228.72 7	1/2-	70.1 s 4	
539.86 8	$1/2^+$		
582.16 6	5/2+	3.6 ns 6	$T_{1/2}$: from $\gamma\gamma(t)$ in 1984LiZW. Other: ≈ 3 ns estimated from $\gamma\gamma(t)$ in 1982Me01.
963.26 5	$3/2^{+}$		-/
1062.89 7	$(1/2^+, 3/2, 5/2^-)$		
1100.45 7	3/2+		
1265.03 10	$(5/2^+, 7/2^+)$		
1296.27 9	$(11/2^+)$		
1331.56 5	5/2+		
1472.96 10	$(3/2)^+$		
1526.49 8	$(7/2^+, 9/2^+)$		
1664.84 18	5/2+		
1710.43 7	$(1/2^+, 3/2)$		
1822.48 6	$(5/2^+, 7/2, 9/2^+)$		
1907.66 21	(5 10+ 7 10+)		
1943.31 8	$(5/2^+, 7/2^+)$		
2070.84 3	$(5/2^+, 7/2^+)$		
2137.07 11	$(1/2^+, 3/2)$ $(5/2^+)$		
2109.00 20	(3/2)		
2402.23 0	$\frac{3}{2}$		
2678 72 11	5/2		
2724 65 7	$(5/2^+ 7/2^+)$		
2858.02.6	5/2+		
2880.54 5	0/=		
2971.2 3	$(3/2^{-})$		
2981.02 6	$(5/2^+, 7/2^+)$		
3167.19 7	$(1/2^+, 3/2)$		
3243.03 7	$(5/2^+, 7/2^+)$		
3281.93 8	$(1/2^+, 3/2, 5/2^+)$		
3333.22 8			
3386.4 <i>3</i>			
3423.9 6			
3463.6 10	5/2+		
3558.4 10			
3689.9 5			

83 As β^- decay 1975Kr08,1982Me01,1984LiZW (continued)

⁸³Se Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
3827.7 8 3865.1? 20 3911.6 20 4001.3 11	(1/2 ⁺)	E(level): observed only by 1975Kr08, not included in the Adopted Levels.

 † From a least-squares fit to E $\!\gamma,$ by evaluator. ‡ From the Adopted Levels.

 $\gamma(^{83}\text{Se})$

Iγ normalization: an absolute intensity of 34.0% 34 for the 734-keV γ ray from ⁸³As β^- decay has been reported by 1989WaZV. Using this value and the decay scheme, $\Sigma I(\gamma+ce)$ to ⁸³Se(g.s.)=30.9% 16 is deduced by the evaluator. This value compares with 36% 8 (1968De19) and 23% 9 (1974KrZG). However, this normalization results in only 74% β-feeding intensity, indicating incompleteness in the decay scheme or problems with the absolute γ -ray intensity and $\Sigma I(\gamma+ce)$ measurements.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.	α	Comments
42 ^{&} 2 135.8 30 157.2 13 165.3 12 192 2 195 ^{&} 1	≤0.001 0.02 2 0.09 9 0.01 1 0.07 6 <0.18	582.16 1100.45 1822.48 1265.03 1664.84 1526.49	$ \frac{5/2^{+}}{3/2^{+}} \\ (5/2^{+},7/2,9/2^{+}) \\ (5/2^{+},7/2^{+}) \\ 5/2^{+} \\ (7/2^{+},9/2^{+}) $	539.86 963.26 1664.84 1100.45 1472.96 1331.56	$ \frac{1/2^{+}}{3/2^{+}} \\ 5/2^{+} \\ 3/2^{+} \\ (3/2)^{+} \\ 5/2^{+} $	[E2]	20 4	α (K)=16 3; α (L)=3.9 10; α (M)=0.60 15; α (N)=0.040 10
207 ^{&} 2	< 0.06	1472.96	$(3/2)^+$	1265.03	$(5/2^+, 7/2^+)$	[E2]	0.0561 22	α (K)=0.0494 <i>19</i> ; α (L)=0.00575 <i>23</i> ; α (M)=0.00089 <i>4</i> ; α (N)=7.2×10 ⁻⁵ <i>3</i>
230.0 2 231 ^{&} 2	1.0 <i>1</i> ≤0.06	1526.49 1331.56	(7/2 ⁺ ,9/2 ⁺) 5/2 ⁺	1296.27 1100.45	(11/2 ⁺) 3/2 ⁺			
237.0 ^{&}	0.01	1710.43	$(1/2^+, 3/2)$	1472.96	$(3/2)^+$			E_{γ} , I_{γ} : in Figure IV.4 of 1984LiZW, but not included in Table IV.3.
268 2	0.02 2	1331.56	5/2+	1062.89	(1/2+,3/2,5/2-)	[E1]	0.00437 12	α (K)=0.00390 <i>10</i> ; α (L)=0.000408 <i>11</i> ; α (M)=6.32×10 ⁻⁵ <i>17</i> ; α (N)=5.34×10 ⁻⁶ <i>14</i>
296 ^{&} 2	< 0.10	1822.48	$(5/2^+, 7/2, 9/2^+)$	1526.49	$(7/2^+, 9/2^+)$			
311.5 1	3.07 9	539.86	1/2+	228.72	1/2-	[E1]	0.00287	$\alpha(K)=0.00256\ 4;\ \alpha(L)=0.000267\ 4;\ \alpha(M)=4.15\times10^{-5}\ 6;\ \alpha(N)=3.51\times10^{-6}\ 5$ E _{γ} ,I _{γ} : likely corresponds to an unplaced E γ =310.0 3, I _{γ} =2.7 3 transition observed in 1975Kr08.
333.2 ^{&} 6	< 0.05	1664.84	5/2+	1331.56	5/2+			,
350 ^{&} 2 367.5 20 372.6 <i>I</i> 380.7 8 397.8 <i>I</i> 400 ^{&} 2 411.8 ^{&} <i>II</i> 423.0 ^{&} 20 445.6 2	<0.06 0.06 5 0.44 5 0.04 3 0.25 3 <0.04 <0.2 <0.06 0.66 3	1822.48 1331.56 1472.96 963.26 2880.54 1664.84 2076.84 963.26 1710.43	$(5/2^+,7/2,9/2^+)$ $5/2^+$ $(3/2)^+$ $3/2^+$ $5/2^+$ $(5/2^+,7/2^+)$ $3/2^+$ $(1/2^+,3/2)$	1472.96 963.26 1100.45 582.16 2482.25 1265.03 1664.84 539.86 1265.03	$(3/2)^{+} 3/2^{+} 3/2^{+} 5/2^{+} 5/2^{+} (5/2^{+},7/2^{+}) 5/2^{+} 1/2^{+} (5/2^{+},7/2^{+})$			
480.0 ^{&} 20 491.2 <i>I</i> 518.2 <i>I</i> 526 ^{&} 2	<0.04 0.81 <i>4</i> 3.43 <i>21</i> <0.08	1062.89 1822.48 1100.45 1822.48	$(1/2^+, 3/2, 5/2^-)$ (5/2^+, 7/2, 9/2^+) 3/2^+ (5/2^+, 7/2, 9/2^+)	582.16 1331.56 582.16 1296.27	5/2 ⁺ 5/2 ⁺ 5/2 ⁺ (11/2 ⁺)			

 $\boldsymbol{\omega}$

 $^{83}_{34}$ Se₄₉-3

$ \underbrace{ \begin{array}{cccc} \underline{Y}^{(83}\text{Se) (continued)} \\ \hline \underline{F_{\gamma}}^{\dagger} & \underline{I_{\gamma}}^{\dagger\#} & \underline{F_{i}(\text{level})} & \underline{J_{i}^{\pi}} & \underline{E_{f}} & \underline{J_{f}^{\pi}} & \underline{Mult.} & \underline{\alpha} & \underline{Comments} \\ \hline \underline{549.8\ 2} & \underline{0.34\ 4} & \underline{2076.84} & \underline{(5/2^{+},7/2^{+})} & \underline{1526.49} & \underline{(7/2^{+},9/2^{+})} & \underline{\alpha} & \underline{Comments} \\ \hline \underline{557\%\ 2} & \underline{<0.02} & \underline{1822.48} & \underline{(5/2^{+},7/2,9/2^{+})} & \underline{1265.03} & \underline{(5/2^{+},7/2^{+})} \\ \underline{565\%\ 2} & \underline{<0.02} & \underline{1664.84} & \underline{5/2^{+}} & \underline{1100.45} & \underline{3/2^{+}} \\ \hline \underline{582.4\ 1} & \underline{10.9\ 2} & \underline{582.16} & \underline{5/2^{+}} & \underline{0.0\ 9/2^{+}} & \underline{[E2]} & \underline{1.74\times10^{-3}} & \underline{\alpha(K)=0.001550\ 22;\ \alpha(L)=0.0001658\ 24;\ \alpha(M)=2.58\times10^{-5} \\ \underline{4;\ \alpha(N)=2.17\times10^{-6}\ 3} \\ \underline{F_{\gamma}},I_{\gamma}: \ 1kely\ corresponds\ to\ an\ unplaced\ E_{Y}=582.0\ 1, \\ \underline{1Y=9.9\ 4\ transition\ observed\ in\ 1975Kr08.} \\ \hline \underline{603\%\ 2} & \underline{<0.04} & \underline{1664.84} & \underline{5/2^{+}} & \underline{1062.89\ (1/2^{+},3/2,5/2^{-})} & \underline{[E1]} & \underline{5.30\times10^{-4}\ 9} & \underline{\alpha(K)=0.000473\ 8;\ \alpha(L)=4.91\times10^{-5}\ 8;\ \alpha(M)=7.64\times10^{-6} \\ \hline \underline{60.000473\ 8;\ \alpha(L)=4.91\times10^{-5}\ 8;\ \alpha(M)=7.64\times10^{-6} \\ \hline 60.000473\ 8;\$					83 As β^- de	cay 1975Kr08	8,1982M	e01,1984LiZW	(continued)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						γ (⁸³ S	e) (conti	nued)	
549.8 2 $0.34 4$ 2076.84 $(5/2^+, 7/2^+)$ 1526.49 $(7/2^+, 9/2^+)$ 557 & 2 <0.02 1822.48 $(5/2^+, 7/2, 9/2^+)$ 1265.03 $(5/2^+, 7/2^+)$ 560.6 I $1.0 I$ 1100.45 $3/2^+$ 539.86 $1/2^+$ $565 & 2$ <0.02 1664.84 $5/2^+$ 1100.45 $3/2^+$ $582.4 I$ $10.9 2$ 582.16 $5/2^+$ $0.0 9/2^+$ $[E2]$ 1.74×10^{-3} $\alpha(K) = 0.001550 22; \alpha(L) = 0.0001658 24; \alpha(M) = 2.58 \times 10^{-5}$ $4; \alpha(N) = 2.17 \times 10^{-6} 3$ $E_{\gamma, I_{\gamma}}$: likely corresponds to an unplaced $E_{\gamma} = 582.0 I$, $I_{\gamma} = 9.9 4$ transition observed in $1975 Kr08$. $603 & 2$ <0.04 1664.84 $5/2^+$ $1062.89 (1/2^+, 3/2, 5/2^-)$ $[E1]$ $5.30 \times 10^{-4} 9$ $\alpha(K) = 0.000473 8; \alpha(L) = 4.91 \times 10^{-5} 8; \alpha(M) = 7.64 \times 10^{-6}$	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	J_i^π	E_f	J_f^π	Mult.	α	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	549.8 2	0.34 4	2076.84	$(5/2^+, 7/2^+)$	1526.49	$(7/2^+, 9/2^+)$			
560.6 I 1.0 I 1100.45 $3/2^+$ 539.86 $1/2^+$ 565 $& 2$ <0.02	557 <mark>&</mark> 2	< 0.02	1822.48	$(5/2^+, 7/2, 9/2^+)$	1265.03	$(5/2^+, 7/2^+)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	560.6 1	1.0 1	1100.45	3/2+	539.86	1/2+			
$582.4 \ 1 \qquad 10.9 \ 2 \qquad 582.16 \qquad 5/2^{+} \qquad 0.0 9/2^{+} \qquad [E2] \qquad 1.74 \times 10^{-3} \qquad \alpha(K) = 0.001550 \ 22; \ \alpha(L) = 0.0001658 \ 24; \ \alpha(M) = 2.58 \times 10^{-3} \\ 4; \ \alpha(N) = 2.17 \times 10^{-6} \ 3 \\ E_{\gamma}, I_{\gamma}: \text{ likely corresponds to an unplaced } E_{\gamma} = 582.0 \ I, \\ I_{\gamma} = 9.9 \ 4 \text{ transition observed in } 1975 \text{ Kr08.} \\ 603^{\&} \ 2 \qquad <0.04 \qquad 1664.84 \qquad 5/2^{+} \qquad 1062.89 \ (1/2^{+}, 3/2, 5/2^{-}) \qquad [E1] \qquad 5.30 \times 10^{-4} \ 9 \qquad \alpha(K) = 0.000473 \ 8; \ \alpha(L) = 4.91 \times 10^{-5} \ 8; \ \alpha(M) = 7.64 \times 10^{-6} \\ \end{cases}$	565 ^{&} 2	< 0.02	1664.84	5/2+	1100.45	3/2+			
$4; \alpha(N)=2.1/\times 10^{-5} 3$ $E_{\gamma}.I_{\gamma}: \text{ likely corresponds to an unplaced } E_{\gamma}=582.0 \ I,$ $I_{\gamma}=9.9 \ 4 \text{ transition observed in } 1975\text{ Kr08}.$ $603^{\&} 2 < <0.04 1664.84 5/2^{+} \qquad 1062.89 \ (1/2^{+},3/2,5/2^{-}) [E1] 5.30\times 10^{-4} \ 9 \alpha(K)=0.000473 \ 8; \ \alpha(L)=4.91\times 10^{-5} \ 8; \ \alpha(M)=7.64\times 10^{-6}$	582.4 1	10.9 2	582.16	5/2+	0.0	9/2+	[E2]	1.74×10^{-3}	$\alpha(K)=0.001550\ 22;\ \alpha(L)=0.0001658\ 24;\ \alpha(M)=2.58\times10^{-3}$
$603^{\&} 2 < <0.04 \qquad 1664.84 \qquad 5/2^{+} \qquad 1062.89 (1/2^{+}, 3/2, 5/2^{-}) [E1] \qquad 5.30 \times 10^{-4} 9 \alpha(K) = 0.000473 8; \alpha(L) = 4.91 \times 10^{-5} 8; \alpha(M) = 7.64 \times 10^{-6}$									4; $\alpha(N)=2.1/\times 10^{\circ}$ 3 E_{γ},I_{γ} : likely corresponds to an unplaced $E\gamma=582.0$ 1, $I\gamma=9.9$ 4 transition observed in 1975Kr08.
$I3; \alpha(N)=6.51\times10^{-7} II$	603 ^{&} 2	< 0.04	1664.84	5/2+	1062.89	(1/2 ⁺ ,3/2,5/2 ⁻)	[E1]	5.30×10 ⁻⁴ 9	$\alpha(K)=0.000473 \ 8; \ \alpha(L)=4.91\times10^{-5} \ 8; \ \alpha(M)=7.64\times10^{-6}$ 13; $\alpha(N)=6.51\times10^{-7} \ 11$
$609.7 \ 1 \qquad 0.05 \ 3 \qquad 1710.43 \qquad (1/2^+, 3/2) \qquad 1100.45 3/2^+$	609.7 1	0.05 3	1710.43	$(1/2^+, 3/2)$	1100.45	3/2+			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	648 ^{&} 2	< 0.04	1710.43	$(1/2^+, 3/2)$	1062.89	$(1/2^+, 3/2, 5/2^-)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	682.9 <i>1</i> 685.0 20	1.23 9	1265.03	$(5/2^+, 1/2^+)$ $(1/2^+, 3/2)$	582.16 2482.25	5/2 ⁺ 5/2 ⁺			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	690.8 2	0.25 8	2880.54	(1/2, 3/2)	2189.80	$(5/2^+)$			
$702.1^{\&} 16 < 0.14 \qquad 1664.84 \qquad 5/2^+ \qquad 963.26 \qquad 3/2^+$	702.1 ^{&} 16	< 0.14	1664.84	5/2+	963.26	3/2+			
$722^{\&} 2 < 0.06 1822.48 (5/2^+, 7/2, 9/2^+) 1100.45 3/2^+$	722 <mark>&</mark> 2	< 0.06	1822.48	(5/2+,7/2,9/2+)	1100.45	3/2+			
734.9 <i>I</i> 100 <i>I</i> 963.26 3/2 ⁺ 228.72 1/2 ⁻ [E1] 3.40×10^{-4} $\alpha(K) = 0.000304 5; \alpha(L) = 3.15 \times 10^{-5} 5; \alpha(M) = 4.89 \times 10^{-6} 7; \alpha(N) = 4.17 \times 10^{-7} 6$	734.9 1	100 1	963.26	3/2+	228.72	1/2-	[E1]	3.40×10^{-4}	α (K)=0.000304 5; α (L)=3.15×10 ⁻⁵ 5; α (M)=4.89×10 ⁻⁶ 7; α (N)=4.17×10 ⁻⁷ 6
745.4 <i>I</i> 0.29 6 2076.84 $(5/2^+, 7/2^+)$ 1331.56 $5/2^+$	745.4 1	0.29 6	2076.84	$(5/2^+, 7/2^+)$	1331.56	$5/2^+$			
$/48.8 2$ 1.23 24 1331.30 $3/2^{+}$ 582.10 $5/2^{+}$	748.8 2	1.23 24	1331.30	$\frac{3}{2}$	582.10	$5/2^{+}$			
759^{-2} < 0.06 1822.48 (5/2 ⁺ , 7/2, 9/2 ⁺) 1062.89 (1/2 ⁺ , 5/2, 5/2 ⁺) 760.6.75 0.14.6 3243.03 (5/2 ⁺ , 7/2 ⁺) 2482.25 5/2 ⁺	760.6.15	<0.06 0.14 6	1822.48	$(5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$	2482.25	$(1/2^+, 3/2, 3/2^-)$ $5/2^+$			
781.1 <i>I</i> 3.23 23 2858.02 $5/2^+$ 2076.84 $(5/2^+, 7/2^+)$ [E1] 2.99×10 ⁻⁴ α (K)=0.000267 4; α (L)=2.76×10 ⁻⁵ 4; α (M)=4.29×10 ⁻⁶ 6;	781.1 1	3.23 23	2858.02	5/2 ⁺	2076.84	$(5/2^+, 7/2^+)$	[E1]	2.99×10^{-4}	$\alpha(K)=0.000267 4; \alpha(L)=2.76\times10^{-5} 4; \alpha(M)=4.29\times10^{-6} 6;$
$\alpha(N)=3.66\times10^{-7}$ 6									$\alpha(N)=3.66\times10^{-7}$ 6
E_{γ} : other: 780.5 2 (1975Kr08).									E_{γ} : other: 780.5 2 (1975Kr08).
I_{γ} : other: 2.8.3 (19/5Kr08). 701.0 10 0.04.3 1331.56 5/2 ⁺ 530.86 1/2 ⁺ (E2) 7.50×10 ⁻⁴ α (K)=0.000668 10; α (L)=7.05×10 ⁻⁵ L1; α (M)=1.007×10 ⁻⁵	701.0.10	0.04.3	1331 56	5/2+	530.86	1/2+	[E2]	7.50×10^{-4}	I_{γ} : other: 2.8.3 (1975Kr08). $\alpha(K) = 0.000668 I_{0}$: $\alpha(L) = 7.05 \times 10^{-5} I_{1}$: $\alpha(M) = 1.007 \times 10^{-5}$
$\frac{16}{\alpha(N)} = 9.31 \times 10^{-7} I4$	791.0 10	0.04 5	1551.50	5/2	559.00	1/2		7.30×10	$I(\mathbf{x}) = 0.000008 \ I0, \ \alpha(\mathbf{x}) = 7.05 \times 10^{-10} \ I1, \ \alpha(\mathbf{w}) = 1.057 \times 10^{-10} \ I6: \ \alpha(\mathbf{x}) = 9.31 \times 10^{-7} \ I4$
803.8 <i>I</i> 9.3 2 2880.54 2076.84 $(5/2^+, 7/2^+)$ I _y : other: 9.2 4 (1975Kr08).	803.8 1	9.3 2	2880.54		2076.84	$(5/2^+, 7/2^+)$			I_{γ} : other: 9.2 4 (1975Kr08).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	806.0 10	0.31 15	2137.67	$(1/2^+, 3/2)$	1331.56	$5/2^+$			
807.53 0.258 1907.66 1100.45 3/2 ⁺ 812.0.20 0.022 20076.84 (5/2 ⁺ 7/2 ⁺) 1265.02 (5/2 ⁺ 7/2 ⁺)	807.5 3	0.25 8	1907.66	(5/2+7/2+)	1100.45	$3/2^+$			
$812.0\ 20$ $0.05\ 5$ 2070.84 $(5/2\ 7/2\)$ $1205.05\ (5/2\ 7/2\)$ $817.2\ 10$ $0.27\ 14\ 2482.25\ 5/2^+$ $1664.84\ 5/2^+$	812.0 20	0.03 3	2482.25	(3/2, 7/2) $5/2^+$	1203.03	(3/2, 7/2) $5/2^+$			
834.1 <i>I</i> 20.0 2 1062.89 $(1/2^+, 3/2, 5/2^-)$ 228.72 $1/2^-$ E _y : 1975Kr08 observed a γ ray with E γ =833.8 <i>I</i> , I γ =19.5 <i>I</i> 7 which could not be placed in the decay scheme. 1975Kr08 observe coincidences with the 735 γ , inconsistent with its placement from 1062-keV level. 1984LiZW do not observe coincidences between the 834 γ and the 735 γ	834.1 <i>I</i>	20.0 2	1062.89	(1/2 ⁺ ,3/2,5/2 ⁻)	228.72	1/2-			E_{γ} : 1975Kr08 observed a γ ray with $E\gamma$ =833.8 <i>I</i> , $I\gamma$ =19.5 <i>I</i> 7 which could not be placed in the decay scheme. 1975Kr08 observe coincidences with the 735 γ , inconsistent with its placement from 1062-keV level. 1984LiZW do not observe coincidences between the 834 γ and the 735 γ
845.0 15 0.10 5 1907.66 $1062.89 (1/2^+, 3/2, 5/2^-)$	845.0 15	0.10 5	1907.66		1062.89	(1/2+,3/2,5/2-)			63 17 and the 155 y.

4

 $^{83}_{34}$ Se $_{49}$ -4

			83 ₄	As β^- deca	y 1975Kr08,1	982Me0 1	l, 1984LiZW (continued)		
γ ⁽⁸³ Se) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	α	Comments		
871.0 15	0.15 12	1100.45	3/2+	228.72	1/2-	[E1]	2.39×10 ⁻⁴	$\alpha(K)=0.000213 \ 3; \ \alpha(L)=2.20\times10^{-5} \ 4; \ \alpha(M)=3.42\times10^{-6} \ 5; \ \alpha(N)=2.92\times10^{-7} \ 5$		
891 ^{&} 2 904.0 <i>I</i> 914.5 <i>I</i> 933.1 2	<0.03 0.29 2 0.53 4 0.37 4	1472.96 2981.02 2858.02 1472.96	$(3/2)^+$ (5/2 ⁺ ,7/2 ⁺) 5/2 ⁺ (3/2) ⁺	582.16 2076.84 1943.31 539.86	5/2 ⁺ (5/2 ⁺ ,7/2 ⁺) (5/2 ⁺ ,7/2 ⁺) 1/2 ⁺					
944.0 ^{@&} 3	0.06 [@]	1526.49	$(7/2^+, 9/2^+)$	582.16	5/2+			E_{γ} , I_{γ} : in Figure IV.4 of 1984LiZW, but not included in Table IV.3.		
944.0 ^{@&} 3	<0.18@	1907.66		963.26	3/2+			E_{γ} : half-life of transition not in agreement with that of ⁸³ As, not included in the Adopted Levels.		
979.8 <i>1</i> 1010.0 <i>20</i> 1014.0 <i>1</i>	0.73 <i>4</i> 0.10 <i>10</i> 6.1 <i>2</i>	1943.31 2482.25 2076.84	$(5/2^+,7/2^+)$ $5/2^+$ $(5/2^+,7/2^+)$	963.26 1472.96 1062.89	3/2 ⁺ (3/2) ⁺ (1/2 ⁺ ,3/2,5/2 ⁻)			E_{γ}, I_{γ} : likely corresponds to an unplaced $E_{\gamma}=1013.7$ 2, $I_{\gamma}=6.1.5$ transition observed in 1975Kr08.		
1036.8 ^{@&} 20	<0.16	2137.67	$(1/2^+, 3/2)$	1100.45	3/2+			-,		
1036.8 [@] 20 1058.2 1	<1.6 [@] 7.7 2	2981.02 2880.54	(5/2 ⁺ ,7/2 ⁺)	1943.31 1822.48	$(5/2^+, 7/2^+)$ $(5/2^+, 7/2, 9/2^+)$			E_{γ} , I_{γ} : possibly corresponds to an unplaced E_{γ} =1057.6 2, I_{γ} =4.7 10 transition observed in 1975Kr08.		
1074.0 7 1082.9 5 1113.4 <i>I</i> 1125.0 <i>3</i>	1.5 2 0.71 <i>14</i> 36.1 <i>11</i> 0.28 6	2137.67 1664.84 2076.84 1664.84	$(1/2^+, 3/2)$ $5/2^+$ $(5/2^+, 7/2^+)$ $5/2^+$	1062.89 582.16 963.26 539.86	(1/2 ⁺ ,3/2,5/2 ⁻) 5/2 ⁺ 3/2 ⁺ 1/2 ⁺	[E2]	3.22×10 ⁻⁴	I _γ : other: 34.1 27 (1975Kr08). α (K)=0.000286 4; α (L)=2.98×10 ⁻⁵ 5; α (M)=4.64×10 ⁻⁶ 7;		
1127.8 <i>1</i> 1143.6 <i>3</i> 1151.1 <i>4</i>	0.97 8 0.23 6 0.60 5	1710.43 3281.93 2482.25	$(1/2^+, 3/2)$ $(1/2^+, 3/2, 5/2^+)$ $5/2^+$	582.16 2137.67 1331.56	5/2 ⁺ (1/2 ⁺ ,3/2) 5/2 ⁺			$\alpha(N)=3.96\times10^{-7}$ 6		
1158.7 1	1.31 20	2981.02	$(5/2^+, 7/2^+)$	1822.48	$(5/2^+, 7/2, 9/2^+)$			E_{γ} , I_{γ} : possibly corresponds to an unplaced E_{γ} =1158.4 2, I_{γ} =4.6 5 transition observed in 1975Kr08.		
1169.3 T 1170 0 ^{&}	1.43 9 0.02	2880.54 1710.43	$(1/2^+ 3/2)$	1710.43 539.86	$(1/2^+, 3/2)$ $1/2^+$			E. L.: in Figure IV4 of 1984LiZW but not included in		
1196.0 <i>6</i> 1218.0 <i>10</i> 1240.0 <i>5</i>	0.14 <i>3</i> 0.07 <i>6</i> 0.08 <i>4</i>	3333.22 2482.25 1822.48	$5/2^+$ $5/2^+$ $5/2^+,7/2,9/2^+)$	2137.67 1265.03 582.16	$(1/2^+, 3/2)$ $(5/2^+, 7/2^+)$ $5/2^+$			Table IV.3.		
1243.0 10	0.10 8	1472.96	(3/2)+	228.72	1/2-	[E1]	1.96×10^{-4}	$\alpha(K)=0.0001085 \ I6; \ \alpha(L)=1.117\times 10^{-5} \ I6; \ \alpha(M)=1.737\times 10^{-6} \ 25; \ \alpha(N)=1.486\times 10^{-7} \ 21$		
1257.0 2 1258.0 21 1265.1 5 1296.2 1 1326.8 10	0.23 <i>4</i> 0.19 <i>5</i> 0.09 <i>3</i> 1.24 <i>6</i> 0.15 <i>8</i>	3333.22 3167.19 1265.03 1296.27 1907.66	$(1/2^+,3/2)$ $(5/2^+,7/2^+)$ $(11/2^+)$	2076.84 1907.66 0.0 0.0 582.16	(5/2 ⁺ ,7/2 ⁺) 9/2 ⁺ 9/2 ⁺ 5/2 ⁺			$u(w_{j}-1.757\times 10^{-2.5}, u(w_{j}-1.400\times 10^{-2.1})$		

S

From ENSDF

 $^{83}_{34}\mathrm{Se}_{49}$ -5

L

				83 As β^- de	ecay 1975Kr08	8,1982M	e01,1984LiZW	V (continued)		
γ ⁽⁸³ Se) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α	Comments		
1331.1 <i>3</i>	1.41 10	2858.02	5/2+	1526.49	(7/2+,9/2+)	[E2]	2.58×10 ⁻⁴	α (K)=0.000199 3; α (L)=2.06×10 ⁻⁵ 3; α (M)=3.21×10 ⁻⁶ 5; α (N)=2.74×10 ⁻⁷ 4		
1331.2 <i>I</i>	13.7 4	1331.56	5/2+	0.0	9/2+	[E2]	2.58×10 ⁻⁴	$\alpha(K)=0.000199 \ 3; \ \alpha(L)=2.06\times10^{-5} \ 3; \ \alpha(M)=3.21\times10^{-6} \ 5; \ \alpha(N)=2.74\times10^{-7} \ 4 \ I_{\gamma}: \ other: \ 15.8 \ 11 \ (1975Kr08).$		
1367.0 <mark>&</mark> 11	< 0.02	1907.66		539.86	$1/2^{+}$					
1381.2 10	0.20 10	2482.25	5/2+	1100.45	$3/2^+$					
1408.0 2	< 0.4	2880.54	-/-	1472.96	$(3/2)^+$					
1419.5 2	0.23 4	2482.25	5/2+	1062.89	$(1/2^+, 3/2, 5/2^-)$	[E1]	2.88×10^{-4}	$\alpha(K) = 8.63 \times 10^{-5} \ 12; \ \alpha(L) = 8.87 \times 10^{-6} \ 13; \ \alpha(M) = 1.379 \times 10^{-6} \ 20; \ \alpha(N) = 1.181 \times 10^{-7} \ 17$		
1420.0 10	0.23 4	3243.03	$(5/2^+, 7/2^+)$	1822.48	$(5/2^+, 7/2, 9/2^+)$					
1454.7 <i>3</i>	5.3 <i>3</i>	2981.02	$(5/2^+, 7/2^+)$	1526.49	$(7/2^+, 9/2^+)$					
1480.7 <i>3</i>	0.27 5	1710.43	$(1/2^+, 3/2)$	228.72	$1/2^{-}$					
1518.4 <i>1</i>	2.57 10	2482.25	5/2+	963.26	3/2+					
1526.4 <i>1</i>	8.1 <i>3</i>	1526.49	$(7/2^+, 9/2^+)$	0.0	9/2+					
1537.2 ^{&} 16	0.22 8	2076.84	$(5/2^+, 7/2^+)$	539.86	1/2+			E_{γ} : possibly a transition from the β decay of ⁸² As, not included in Adopted Levels.		
1548.8 /	3.1 /	2880.54		1331.56	$5/2^{+}$			I_{γ} : other: 3.0 2 (1975Kr08).		
1582.3 2	0.30 5	2545.58	3/2+	963.26	$3/2^+$			-/:		
1596.6 8	0.09 5	2137.67	$(1/2^+, 3/2)$	539.86	$1/2^{+}$					
1607.0 15	0.10 7	2189.80	$(5/2^+)$	582.16	5/2+					
1615.5 <i>1</i>	2.27 7	2678.72		1062.89	$(1/2^+, 3/2, 5/2^-)$					
1623.6 4	0.40 4	2724.65	$(5/2^+, 7/2^+)$	1100.45	3/2+					
1641.0 4	0.02 2	2971.2	$(3/2^{-})$	1331.56	5/2+					
1649.2 <i>1</i>	2.20 7	2981.02	$(5/2^+, 7/2^+)$	1331.56	5/2+					
1664.6 <i>3</i>	0.18 4	1664.84	5/2+	0.0	9/2+	[E2]	2.96×10^{-4}	$\alpha(K)=0.0001265 \ 18; \ \alpha(L)=1.308\times 10^{-5} \ 19; \ \alpha(M)=2.03\times 10^{-6}$ 3; $\alpha(N)=1.741\times 10^{-7} \ 25$		
1715.6.5	0.08.3	2981.02	$(5/2^+, 7/2^+)$	1265.03	$(5/2^+, 7/2^+)$					
1761.4 1	0.73 4	2724.65	$(5/2^+, 7/2^+)$	963.26	3/2+					
1780.2 1	1.62 6	2880.54		1100.45	3/2+					
1795.3 <i>1</i>	2.0 1	2858.02	5/2+	1062.89	$(1/2^+, 3/2, 5/2^-)$	[E1]	5.46×10^{-4}	$\alpha(K)=5.91\times10^{-5}$ 9; $\alpha(L)=6.06\times10^{-6}$ 9; $\alpha(M)=9.41\times10^{-7}$ 14; $\alpha(N)=8.07\times10^{-8}$ 12		
1818.0 2	0.61 10	2880.54		1062.89	$(1/2^+, 3/2, 5/2^-)$					
1822.5 <i>1</i>	8.2 2	1822.48	(5/2 ⁺ ,7/2,9/2 ⁺)	0.0	9/2+			E_{γ} , I_{γ} : likely corresponds to an unplaced E_{γ} =1822.4 <i>I</i> , I_{γ} =7.9 <i>7</i> transition observed in 1975Kr08.		
1860.0 <i>3</i>	0.17 10	3333.22		1472.96	$(3/2)^+$					
1894.8 2	12.3 3	2858.02	5/2+	963.26	3/2+			I_{γ} : other: 17.6 15 (1975Kr08).		
1900.3 5	0.19 8	2482.25	5/2+	582.16	5/2+			,		
1908.9 <i>1</i>	1.99 12	2137.67	$(1/2^+, 3/2)$	228.72	$1/2^{-}$					
1912.0 10	0.05 4	3243.03	$(5/2^+, 7/2^+)$	1331.56	5/2+					
1917.3 <i>1</i>	12.9 4	2880.54		963.26	$3/2^{+}$			I_{ν} : other: 14.8 <i>17</i> (1975Kr08).		
1919.3 5	0.70 14	2981.02	$(5/2^+, 7/2^+)$	1062.89	$(1/2^+, 3/2, 5/2^-)$, · · · · ·		

6

From ENSDF

 $^{83}_{34}$ Se $_{49}$ -6

L

⁸³As β^- decay 1975Kr08,1982Me01,1984LiZW (continued)

$\gamma(^{83}\text{Se})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	J^{π}_i	E_f	J_f^π	Mult.	α	Comments
1944.0.5	0.14 7	1943.31	$(5/2^+, 7/2^+)$	0.0	9/2+			
2001.0 1	0.12 10	3333.22	(-1- ,.1-)	1331.56	5/2+			
2017.9 <i>I</i>	1.27 10	2981.02	$(5/2^+, 7/2^+)$	963.26	3/2+			
2077.0 1	25.0 5	2076.84	$(5/2^+, 7/2^+)$	0.0	9/2+			I_{γ} : other: 27.7 28 (1975Kr08).
2092.0 10	0.14 3	3423.9		1331.56	5/2+			
2098.3 12	0.09 8	2678.72		582.16	5/2+			
2104.2 2	0.37 4	3167.19	$(1/2^+, 3/2)$	1062.89	$(1/2^+, 3/2, 5/2^-)$			
2141.7 3	0.29 6	2678.72		539.86	$1/2^{+}$			
2142.5 7	0.07 4	2724.65	$(5/2^+, 7/2^+)$	582.16	5/2+			
2180.3 19	0.03 3	3243.03	$(5/2^+, 7/2^+)$	1062.89	$(1/2^+, 3/2, 5/2^-)$			
2190.6 7	0.11 7	2189.80	$(5/2^+)$	0.0	9/2+			
2204.2 1	21.3 4	3167.19	$(1/2^+, 3/2)$	963.26	3/2+			E_{γ} : other: 2202.9 2 (1975Kr08).
								I_{γ} : other: 22.2 <i>19</i> (1975Kr08).
2218.7 2	1.44 16	3281.93	$(1/2^+, 3/2, 5/2^+)$	1062.89	$(1/2^+, 3/2, 5/2^-)$			
2270.8 5	0.15 4	3333.22		1062.89	$(1/2^+, 3/2, 5/2^-)$			
2279.9 1	0.56 5	3243.03	$(5/2^+, 7/2^+)$	963.26	3/2+			
2299.2 1	0.89 5	2880.54	(1/0+ 2/0 5/0+)	582.16	5/2+			
2318.8 1	2.52 5	3281.93	(1/2, 3/2, 5/2)	963.26	3/2*			E_{γ} , I_{γ} : possibly corresponds to an unplaced E_{γ} =2316.5 10, I_{γ} =1.8 9 transition observed in 1975Kr08.
2360.0 10	0.07 4	3423.9		1062.89	$(1/2^+, 3/2, 5/2^-)$			
2370.4 1	1.14 6	3333.22		963.26	3/2+			
2388.3 9	0.23 5	2971.2	$(3/2^{-})$	582.16	5/2+			
2423.1 <i>3</i>	0.58 7	3386.4		963.26	3/2+			
2429.5 5	0.29 5	2971.2	$(3/2^{-})$	539.86	$1/2^{+}$			
2449.9 2	0.97 8	2678.72		228.72	1/2-			
2461.9 10	0.25 4	3423.9		963.26	3/2+			
2580.0 20	0.2 2	3911.6		1331.56	5/2+			
2585.2 1	0.17 3	3167.19	$(1/2^+, 3/2)$	582.16	5/2+			
2626.7 5	0.11 3	3689.9	(1)(0)(0)	1062.89	$(1/2^+, 3/2, 5/2^-)$			
2629.0 15	0.03 2	3167.19	$(1/2^+, 3/2)$	539.86	1/2+			
^x 2660.1 ⁺ 10	2.6+ 4							
2699.6 1	0.52 3	3281.93	$(1/2^+, 3/2, 5/2^+)$	582.16	5/2+			
2724.6 1	0.18 6	2724.65	$(5/2^+, 7/2^+)$	0.0	9/2+			
2729.0 15	0.67 7	3689.9		963.26	3/2+			
2742.5 2	0.44 5	3281.93	$(1/2^+, 3/2, 5/2^+)$	539.86	1/2+			
2858.1 <i>l</i>	17.0 3	2858.02	5/2+	0.0	9/2+	[E2]	7.70×10 ⁻⁴	$\alpha(K)=4.81\times10^{-5}$ 7; $\alpha(L)=4.93\times10^{-6}$ 7; $\alpha(M)=7.67\times10^{-7}$ 11; $\alpha(N)=6.58\times10^{-8}$ 10 I_{γ} : other: 16.3 15 (1975Kr08).
2865.0 12	0.07 7	3827.7	$(1/2^+)$	963.26	3/2+			, · · · · ·
2881.4 10	0.11 6	3463.6	5/2+	582.16	5/2+			
2937.9 1	0.66 10	3167.19	$(1/2^+, 3/2)$	228.72	$1/2^{-}$			
2976.2	0.11 6	3558.4		582.16	5/2+			
2981.2 5	1.54 6	2981.02	$(5/2^+, 7/2^+)$	0.0	9/2+			

 \neg

⁸³₃₄Se₄₉-7

83 As β^- decay 1975Kr08,1982Me01,1984LiZW (continued)

$\gamma(^{83}Se)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	\int_{f}^{π}	Comments			
3038.0 11 3242.8 1 3245.0 10 3865.0 ^{‡&} 20	$\begin{array}{c} 0.2 \ 2 \\ 3.5 \ 1 \\ 0.05 \ 5 \\ 1.1^{\ddagger} \ 5 \end{array}$	4001.3 3243.03 3827.7 3865.1?	$(5/2^+,7/2^+)$ $(1/2^+)$	963.26 3/2 0.0 9/2 582.16 5/2 0.0 9/2	/2 ⁺ /2 ⁺ /2 ⁺ /2 ⁺	I_{γ} : other: 4.1 4 (1975Kr08).			
[†] From 1984LiZW, except where noted. [‡] From 1975Kr08.									

^a From 1975 K108.
^a Absolute intensity per 100 decays.
^a Multiply placed with intensity suitably divided.
^b Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

⁸³As β⁻ decay 1975Kr08,1982Me01,1984LiZW

⁸³As β^- decay 1975Kr08,1982Me01,1984LiZW

⁸³As β^- decay 1975Kr08,1982Me01,1984LiZW

83 As β^- decay 1975Kr08,1982Me01,1984LiZW

83 As β^- decay 1975Kr08,1982Me01,1984LiZW

83 As β^- decay 1975Kr08,1982Me01,1984LiZW

