⁸⁴Ga β⁻n decay (85 ms) 2010Wi03,2009Le26

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 125, 201 (2015)	31-Dec-2014

Parent: ⁸⁴Ga: E=0.0; $J^{\pi}=(0^{-})$; $T_{1/2}=85$ ms 10; $Q(\beta^{-}n)=8440$ SY; $\%\beta^{-}n$ decay=74 14

⁸⁴Ga- $\%\beta^-$ n decay: $\%\beta^-=100$; $\%\beta^-$ n=74 *14* (2010Wi03). Other: $\%\beta^-$ n=70 *15* (1991Kr15,2002Pf04).

2010Wi03 (also 2009Gr06, 2008WiZS): ⁸⁴Ga isotope produced in proton induced fission of ²³⁸U with E(p)=54 MeV. Fission products passed through charge exchange cell, separated in the high-resolution injector magnet and re-accelerated to 225 MeV. Identification based on time-of-flight and energy loss. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ and $\beta\gamma$ coincidences using four HPGe clover detectors and two plastic scintillator detectors.

2009Le26 (also 2009Ve11): ⁸⁴Ga isotope produced in photofission of UC_x target with a 50-MeV electron beam. Fission products ionized and magnetically mass separated. Measured E γ , I γ , $\beta\gamma$ coincidences using a coaxial HPGe detector, a small EXOGAM clover detector and a cylindrical plastic scintillator.

2006Pe20 (also 2007Ib01,2004Ve14,2003Pe18): ⁸⁴Ga isotope produced in fast neutron induced fission of ²³⁸U. Fission products ionized and magnetically mass separated. Measured E γ , I γ , $\gamma\gamma$ and $\beta\gamma$ coincidences using two large volume HPGe detectors and a 4π plastic scintillator.

2009Le26 suggest the presence of an isomer in ⁸⁴Ga with half-life of <85 ms and $J^{\pi}=(3^-,4^-)$. This isomer may also decay by delayed- neutron emission, but no details of such a decay are known.

Level scheme is that of 2010Wi03. 2006Pe20 place a 867 γ from a level at 867 keV. Such a transition is not reported by 2009Pe20 or 2010Wi03 in ⁸⁴Ga β^- n decay, and thus, the 867-keV level and γ ray are not adopted here. See also comments on ⁸³Ga β^- decay for additional discussion of the 867 γ and 867-keV level. 2009Le26 report the 1046 γ as belonging to the β^- decay of ⁸⁴Ga into ⁸⁴Ge and based on an intensity imbalance, suggest the presence of an isomer in ⁸⁴Ga with half-life of <85 ms and $J^{\pi}=(3^-,4^-)$. 2010Wi03 observe the 1046 γ in both their ⁸³Ga and ⁸⁴Ga decay data, supporting its placement as a transition in ⁸³Ga.

⁸³Ge Levels

E(level) [†]	$J^{\pi \ddagger}$
0 247.7 <i>3</i>	$(5/2)^+$ $1/2^+$
1046.0 6	

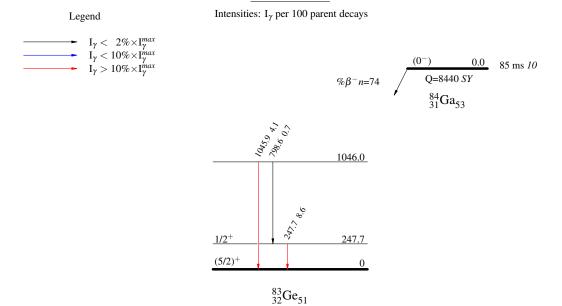
 † From a least-squares fit to Ey, by evaluator.

[‡] From the Adopted Levels.

$\gamma(^{83}\text{Ge})$

Iy normalization: From measured absolute intensity of 248γ , Iy(248γ)=8.6% 8 (2010Wi03).

E_{γ}^{\dagger}	I_{γ} ^{‡#}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
247.7 3	100 7	247.7	$1/2^{+}$	0	$(5/2)^+$	E_{γ} : weighted average of 247.8 <i>3</i> (2009Le26) and 247.3 <i>5</i> (2010Wi03).
798.6 <i>10</i>	84	1046.0		247.7	$1/2^{+}$	
1045.9 7	48 7	1046.0		0	$(5/2)^+$	


[†] From 2010Wi03, except where noted.

[‡] From 2010Wi03, normalized to $I\gamma(248\gamma)=100$.

[#] For absolute intensity per 100 decays, multiply by 0.086 *16*.

⁸⁴Ga β^- n decay (85 ms) 2010Wi03,2009Le26

Decay Scheme

2