82**Se**(3**He,d)** 1983Zu01

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	E. A. Mccutchan	NDS 125, 201 (2015)	31-Dec-2014		

E(3 He)=24.0 MeV. Measured E(d) and $\sigma(\theta)$ from θ =5° to 60° using 100 cm magnetic spectrograph and nuclear track plates for E(d) (FWHM=18-25 keV) and position sensitive gas proportional counters for $\sigma(\theta)$ (FWHM=25-30 keV); DWBA analysis using DWUCK4 code. See also 1982Zu04 for Q value determination and 1981ZuZX, thesis.

83Br Levels

E(level)	L^{\dagger}	$(2J+1)C^2S^{\ddagger}$	Comments
0	1	1.55 16	$(2J+1)C^2S$: for adopted $J^{\pi}=3/2^-$.
357.5 <i>14</i>	3	1.94 19	(25-17)C 5. 101 adopted 5 - 5/2 .
801.9 <i>14</i>	3	1.04 10	
871.8 <i>21</i>	(1)	0.018,0.015	
990.5 14	1	0.59,0.50	
1030.5 <i>21</i>	(1)	0.064,0.055	
1056.0 14	1	1.37,1.18	
1093.9 <i>14</i>	4	5.4 5	$(2J+1)C^2S$: for adopted $J^{\pi}=9/2^-$. $(2J+1)C^2S=10.4$ 10 for $J^{\pi}=7/2^-$.
1113.7 26			
1355.6 <i>17</i>	2	0.34 3	$(2J+1)C^2S$: for adopted $J^{\pi}=5/2^+$. $(2J+1)C^2S=0.44$ 4 for $J^{\pi}=3/2^+$.
1423.1 20	2+4	0.017,0.013	$(2J+1)C^2S$: for L=2. For L=4, $(2J+1)C^2S=0.25$ and 0.129.
1662.6 <i>15</i>	1	0.191,0.165	
1704.1 <i>18</i>	2+4	0.044,0.034	$(2J+1)C^2S$: for L=2. For L=4, $(2J+1)C^2S=0.52$ and 0.271.
1809.3 25	2+4	0.010,0.008	$(2J+1)C^2S$: for L=2. For L=4, $(2J+1)C^2S=0.104$ and 0.055.
2050.1 24	(1+2)	0.006,0.005	L: or 2+4.
			$(2J+1)C^2S$: for L=1. For L=2, $(2J+1)C^2S=0.021$ and 0.016. For L=4, $(2J+1)C^2S=0.061$ and 0.032.
2400.3 14	4	2.27,1.20	
2729.6 <i>18</i>	1	0.055,0.048	
2759.9 24	(1)	0.069,0.059	
2813.3 22	1	0.031,0.027	
2953.3 17	2	0.150,0.117	
2993.8 22	_		
3034.6 20	2	0.039,0.030	
3130.6 23	0	0.023 2	
3369.0 22			
3441.0 <i>27</i> 3548.4 <i>23</i>			
3613.7 22			
3667.8 22			
3749.3 22			
3804.9 22			
3873.0 22			
3967.5 22			
4016.3 22			
4049.2 26			
4097.6 25			
4160.3 22			
4194.1 27			

[†] From DWBA analysis of $\sigma(\theta)$.

[‡] Derived from σ_{exp} =N×(2J+1)C²S× σ_{DWBA} /(2J+1), with N=4.42. The first value given is for J=L−1/2, the second one for J=L+1/2. Authors provide only a general statement that uncertainty is ≈10%. For L=3 transitions, 1983Zu01 deduced, from shell model considerations, that only the 1f5/2 orbital is available, so only J=5/2 is tabulated.