Adopted Levels, Gammas

Type			Type	Author	History Citation	Literature Cutoff Date			
Full Evaluation			valuation	E. A. Mccutchan	31-Dec-2014				
$Q(\beta^{-})=5671 4$ S(2n)=13279 4	; S(n)=763 4; S(2p)=26	8 5; S(p)= 5619 4 (20	:11543 <i>4</i> ; ()12Wa38).	$Q(\alpha) = -9547 \ 3 \qquad 20$	112Wa38				
				Cross Ref	ference (XREF) Flags				
A 83 Ge β^- decay B 208 Pb(18 O,X γ) C 238 U(82 Se, 83 As γ)									
E(level) [†]	J ^{π‡}	T _{1/2}	XREF	Comments					
0.0	(5/2 ⁻)	13.4 s <i>4</i>	ABC	$\%\beta^-=100$ $T_{1/2}$: weighted average of 14.1 s <i>11</i> (1968De19), 13.3 s <i>4</i> (1969ScZY), 13.3 s <i>6</i> (1974KrZG). J^{π} : the first two orbitals located above the Z=28 shell closure are π f5/2 and π p3/2, thus the low-lying levels are expected to have $J^{\pi}=3/2^-, 5/2^-$. ⁸⁵ Br (Z=35) has $J^{\pi}(g.s.)=3/2^-$, suggesting that the f5/2 orbital is filled first; therefore, ⁸³ As(Z=33) should have $J^{\pi}(g.s.)=5/2^-$. Non observation of the 306-keV level in ²⁰⁸ Pb(¹⁸ O,X γ) further guescate the grin of the grade total is higher than that of the 216 keV level					
306.51 4 711.67 5 1193.70 10 1196.53 14 1256.76 9 1329.87 10 1415.11 10 1434.92 9 1525 48 13	(3/2 ⁻)		AC AA AA AA AA AA	J^{π} : see comment on	J^{π} of ground state.				
1543.41 <i>15</i> 1804 78 <i>11</i>	(9/2)		ABC	J ^{π} : Q 1543 γ to (5/2 ⁻). J ^{π} : D 323 γ to (9/2).					
1866.21 25 1977.86 18 2222.89 21	(11/2)		BC A A						
3093.9 <i>3</i> 3100.2? <i>3</i>	(13/2)		BC BC A	J^{π} : D 1228 γ to (11/2					
$\begin{array}{c} 3206.4 \ 5\\ 3456.7 \ 5\\ 3522.6 \ 3\\ 3733.5 \ 4\\ 3956.5 \ 3\\ 3999.7 \ 4\\ 4030.6? \ 5\\ 4130.11 \ 23\\ 4191.5 \ 4\\ 4221.2 \ 4\\ 4228.3 \ 4\\ 4364.4 \ 5\\ 4405.7 \ 3\\ 4434.1 \ 3\\ 4841.8 \ 7 \end{array}$	(15/2)		BC BC A A A A A A A A A A A A A A	J ^π : D 363γ to (13/2)).				

Adopted Levels, Gammas (continued)

⁸³As Levels (continued)

[†] From a least-squares fit to $E\gamma$, by evaluator.

[‡] For levels with spin assignments above 1.5 MeV, there is the assumption of increasing spin with increasing excitation energy for levels populated in heavy-ion induced reactions. Based on systematics of neighboring N=50 nuclei, negative parity is proposed for the 1543-, 1866-, 3094-, and 3457-keV levels in both 208 Pb(18 O,X γ) and 238 U(82 Se, 83 As γ) (2011Po13,2012Sa46).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.#
306.51	$(3/2^{-})$	306.51.5	100	0.0	$(5/2^{-})$	
711.67	(0/=)	405.18.5	100 6	306.51	$(3/2^{-})$	
/11/0/		711.66.8	27.3	0.0	$(5/2^{-})$	
1193.70		886.96 20	10.7.24	306.51	$(3/2^{-})$	
11/01/0		1193 77 11	100.6	0.0	$(5/2^{-})$	
1196.53		890.01 15	100.8	306.51	$(3/2^{-})$	
1170100		1196.2.5	7 5	0.0	$(5/2^{-})$	
1256.76		950.14 18	27 3	306.51	$(3/2^{-})$	
		1256.81 11	100 8	0.0	$(5/2^{-})$	
1329.87		618.37 12	36 4	711.67	(-1)	
		1023.1 3	37 10	306.51	$(3/2^{-})$	
		1329.61 18	100 16	0.0	$(5/2^{-})$	
1415.11		1108.4 3	13 3	306.51	$(3/2^{-})$	
		1415.09 11	100 7	0.0	$(5/2^{-})$	
1434.92		1128.52 16	53 7	306.51	$(3/2^{-})$	
		1434.87 11	100 7	0.0	$(5/2^{-})$	
1525.48		1219.5 24	15 <i>3</i>	306.51	$(3/2^{-})$	
		1525.50 14	100 9	0.0	$(5/2^{-})$	
1543.41	(9/2)	1543.39 15	100	0.0	$(5/2^{-})$	Q
1804.78		1093.10 10	100	711.67		
1866.21	(11/2)	322.8 [‡] 2	100‡	1543.41	(9/2)	D
1977.86	(1-/=)	562.6.3	42.12	1415.11	(7)-)	2
1777100		1671.2.3	85 15	306.51	$(3/2^{-})$	
		1978.1.3	100 79	0.0	$(5/2^{-})$	
2222.89		966.24 22	67 13	1256.76	(-1-)	
		1916.0 4	100 42	306.51	$(3/2^{-})$	
2777 3		911 1 3	$94^{\textcircled{0}}24$	1866 21	(11/2)	D
2111.5		1234^{\ddagger} <i>1</i>	$100^{@} 40$	1543.41	(11/2) (9/2)	D
2002.0	(12/2)	1227 7 1	100	1966 21	(2/2)	D
3100 22	(13/2)	2703.6.3	100	306.51	(11/2) $(3/2^{-})$	D
2206.4		2795.05	100	200.51	(3/2)	D
3206.4		429.1+ 3	100+	2777.3		D
3456.7	(15/2)	362.84 4	100‡	3093.9	(13/2)	D
3522.6		2087.7 <i>3</i>	100 13	1434.92		
		2325.9 4	75 16	1196.53		
3733.5		3427.1 5	100 12	306.51	$(3/2^{-})$	
		3733.1 6	45 9	0.0	$(5/2^{-})$	
3956.5		2626.8 4	100 17	1329.87		
		3649.4 6	44 8	306.51	$(3/2^{-})$	
3999.7		2194.7 6	59 <i>23</i>	1804.78		
1000 60		3693.2 6	100 23	306.51	$(3/2^{-})$	
4030.6?		2834.0 5	100	1196.53		
4130.11		2604.8 4	28 7	1525.48		
		2873.3 4	47 7	1256.76	(2)2-3	
		3823.2 6	54 16	306.51	$(3/2^{-})$	
4101 5		4129.9 5	100 9	0.0	$(5/2^{-})$	
4191.5		4191.4 <i>4</i>	100	0.0	$(5/2^{-})$	

$\gamma(^{83}As)$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{83}As)$ (continued)

E _i (level)	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
4221.2	2805.7 <mark>&</mark> 6 3027.7 5	28 8 100 <i>12</i>	1415.11 1193.70		4405.7 4434.1		4405.6 <i>6</i> 2908.8 <i>5</i>	100 <i>18</i> 23 5	0.0 1525.48	(5/2-)
4228.3	3031.2 <i>9</i> 3921.9 <i>5</i>	21 <i>10</i> 100 <i>22</i>	1196.53 306.51	$(3/2^{-})$			2999.3 <i>5</i> 4433.6 <i>5</i>	42 5 100 <i>10</i>	1434.92 0.0	$(5/2^{-})$
4364.4 4405.7	4364.3 <i>5</i> 2880.1 <i>4</i>	100 54 <i>10</i>	0.0 1525.48	(5/2-)	4841.8		4841.6 7	100	0.0	(5/2-)

[†] From ⁸³Ge β^- decay, except where noted. [‡] From ²⁰⁸Pb(¹⁸O,X γ).

[#] From $\gamma(\theta)$ and R_{DCO} in ²³⁸U(⁸²Se,⁸³As γ). [@] From ²³⁸U(⁸²Se,⁸³As γ). A limit on I $\gamma(1234\gamma)/I\gamma(911\gamma) < 0.33$ is given in ²⁰⁸Pb(¹⁸O,X γ) (2011Po13). [&] Placement of transition in the level scheme is uncertain.

 $^{83}_{33}As_{50}$

 $^{83}_{33}As_{50}$