1997Ru03 $(HI,xn\gamma)$

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019

1997Ru03: ⁵⁸Ni(²⁸Si,2p2n), E=130 MeV. Gammasphere, 57 Compton-suppressed Ge array, 4π, 95 scin charged-particle detector array Microball, measured $\gamma\gamma$, $\gamma\gamma\gamma$, DCO, T_{1/2} (RDM).

1997Pa07: ⁵⁸Ni(²⁷Al,p2n γ), E=92 MeV, $\gamma\gamma$, T_{1/2} (RDM), observed g.s. band up to 14⁺. 1993Mi07,1993Mi11: ⁵⁸Ni(²⁸Si,2p2n γ), E=128 MeV, $\gamma\gamma$, I γ . 1993Ch41: ⁵⁸Ni(²⁸Si,2p2n), E=120, 125 MeV. Measured T_{1/2} (RDM).

1982Li17: mass separated products from Sr(He,X). Measured $E\gamma$, x-rays.

1982De36: products from 54 Fe(32 S,X). Time-of-flight mass separator. Measured E β , E γ .

82Zr Levels

E(level)	$J^{\pi^{\dagger}\#}$	$T_{1/2}^{\ddagger}$	Comments
0.0&	0+		
407.00 ^{&} 10	2^{+}	22 ps 9	T _{1/2} : from 1997Pa07 RDM. Other: 28 ps 3 (1993Ch41) RDM.
1040.84 ^{&} 14	4+	3.3 ps 7	$T_{1/2}$: from 1997Pa07 RDM. Other: 5.5 ps 14 (1993Ch41) RDM.
1060.87? 22		1	1/2
1449.14 [@] 21	$(3)^{+}$		
1887.87 <mark>&</mark> 24	6+	0.5 ps 2	T _{1/2} : from 1997Ru03 and 1997Pa07 RDM.
2057.3 6			
2175.40 [@] 24	$(5)^+$		
2691.6? ^a 8	(4 ⁻)		
2791.6 ^b 3	$5^{(-)}$		
2856.99 ^c 23	5-		
2908.6 4	8+	0.22 ps 6	
3068.4 ^{<i>@</i>} 4	$(7)^{+}$		
3128.2 ^{<i>d</i>} 3	6-		
3287.3 ^{<i>a</i>} 7	(6 ⁻)		
3480.8 ⁰ 4	$7^{(-)}$		
3506.8 ^c 4	7-		
3946.7 ^{<i>a</i>} 4	8-		
4022.6 ^a 8	(8)		
4036.9 ^{cc} 5	10+	0.16 ps 4	
4086.4 6	(9)+		
4347.7° 5	9(-)		
4444.1° 8	(9)		
4908.4 ^a 6	10^{-}		
4975.2^{-9}	(10)		
5195.4 12	(11)	0.12 (
5213.4° /	12'	0.13 ps 4	
5361.4° 8	(11^{-})		
5050.1° 22	(11)		
5989.2^{a} 8	(12^{-})		
$64064^{@}16$	(12^{+})		
6400.7 ^{&} 7	14+	<0.27 ps	Tense effective Tens not corrected for feeding
$65250^{b}11$	$14 \\ 12(-)$	<0.27 ps	$1_{1/2}$. encenve $1_{1/2}$ not confected for recalling.
$70417\frac{d}{7}0$	13 /		
/041./* 9	14		

$(HI,xn\gamma)$	1997Ru03	(continued)
-----------------	----------	-------------

E(level)	J ^{π†#}	E(level)	J ^π †#	E(level)	J ^{π†#}	E(level)	J ^π †#
7345.2 ^{<i>a</i>} 17	(14-)	7992.5 12	(16 ⁺)	9234.9? 25	(17-)	12365? ^d 3	(22 ⁻)
7680.4 19	$(15)^+$	8113.7 ^d 14	16-	9338.7 ^d 17	(18 ⁻)	14013 ^{&} 3	(24 ⁺)
7687.9 ^b 15	(15 ⁻)	9046.9? ^b 18	(17^{-})	9452.8 12	(18 ⁺)	16120? ^{&} 4	(26 ⁺)
7750.4 19	(15 ⁺)	9070? <i>3</i>	$(17)^{+}$	10490.7 ^{&} 17	(20^{+})		
7859.7 <mark>&</mark> 8	16+	9111.7 <mark>&</mark> <i>13</i>	18^{+}	10752.7 ^d 20	(20 ⁻)		
7907.9? 23	(15 ⁻)	9183? <i>3</i>	$(17)^{+}$	12126.7 ^{&} 19	(22^{+})		

⁸²Zr Levels (continued)

[†] π =– Band C and Band D are signature partners; Band E and Band F are signature partners.

[‡] From Doppler-shift analysis (1997Ru03), unless given otherwise.

[#] From 1997Ru03 based on multipolarities determined by DCO ratios and band membership.

[@] Band(A): π =+, α =1, side band.

& Band(B): π =+, α =0, g.s. band.

^{*a*} Band(C): $\pi = -, \alpha = 0$.

^b Band(D): $\pi = -, \alpha = 1$.

^c Band(E): $\pi = -$, $\alpha = 1$. ^d Band(F): $\pi = -$, $\alpha = 0$.

$\gamma(^{82}\mathrm{Zr})$

DCO ratios are determined with gates set at stretch E2 transitions; various gates were A(278 γ), B(278 γ +504 γ), C(278 γ +712 γ) $D(278\gamma + 712\gamma + 895\gamma), E(504\gamma + 712\gamma + 895\gamma).$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α#	Comments
219 <i>1</i>	11	3287.3	(6^{-})	3068.4	$(7)^{+}$			
271.1 2	71	3128.2	6-	2856.99	5-	D		DCO(gate B)=0.53 5.
336.6 3	11	3128.2	6-	2791.6	$5^{(-)}$			
377.5 6	3 1	3506.8	7^{-}	3128.2	6-	D+Q		DCO(gate B)=0.43 7.
387.7 6	3 1	1449.14	$(3)^{+}$	1060.87?				-
407.0 1	120 4	407.00	2+	0.0	0^{+}	E2	0.00791	α (K)=0.00692 <i>10</i> ; α (L)=0.000825 <i>12</i> ; α (M)=0.0001432 <i>20</i>
								$\alpha(N)=2.00\times10^{-5}$ 3; $\alpha(O)=1.282\times10^{-6}$ 18 DCO(gate B)=1.03 4.
408.3 <i>3</i>	1.0 5	1449.14	$(3)^{+}$	1040.84	4+			E_{ν} : complex calculated from E(level).
439.2 7	21	3946.7	8-	3506.8	7-			
464 1	11	4908.4	10^{-}	4444.1	(9 ⁻)			
596 1	11	3287.3	(6 ⁻)	2691.6?	(4 ⁻)			
633.9 1	100 3	1040.84	4+	407.00	2+	E2	0.00212	α (K)=0.00186 3; α (L)=0.000213 3; α (M)=3.70×10 ⁻⁵ 6
								$\alpha(N) = 5.21 \times 10^{-6} 8; \alpha(O) = 3.52 \times 10^{-7} 5$
								DCO(gate A) = 1.01 3.
650.1 4	31	3506.8	7^{-}	2856.99	5-			
653.8 2	41	1060.87?		407.00	2+			
689 <i>1</i>	31	3480.8	$7^{(-)}$	2791.6	$5^{(-)}$			
726.0 2	10 1	2175.40	(5)+	1449.14	(3)+	(E2)	1.47×10^{-3}	α (K)=0.001296 <i>19</i> ; α (L)=0.0001468 <i>21</i> ; α (M)=2.55×10 ⁻⁵ <i>4</i>
								$\alpha(N)=3.59\times10^{-6} 5; \alpha(O)=2.46\times10^{-7} 4$ DCO(gate A)=0.95.12
735.3 4	5 1	4022.6	(8 ⁻)	3287.3	(6 ⁻)	E2	1.42×10^{-3}	$\alpha(K)=0.001254$ 18; $\alpha(L)=0.0001419$ 20;

Continued on next page (footnotes at end of table)

(HI,xnγ) **1997Ru03** (continued)

$\gamma(^{82}$ Zr) (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{\#}$	Comments
					<u> </u>			$\alpha(M)=2.46\times10^{-5} 4$ $\alpha(N)=3.48\times10^{-6} 5; \alpha(O)=2.38\times10^{-7} 4$ DCO(gate C)=0.92 17.
800 <mark>&</mark> 1	11	2856.99	5-	2057.3				
818.7 <i>3</i>	8 1	3946.7	8-	3128.2	6-	E2	1.08×10 ⁻³	$\alpha(\mathbf{K})=0.000955 \ I4; \ \alpha(\mathbf{L})=0.0001073 \ I5; \ \alpha(\mathbf{M})=1.86 \times 10^{-5} \ 3 \ \alpha(\mathbf{M})=2.63 \times 10^{-6} \ 4; \ \alpha(\mathbf{C})=1.81 \times 10^{-7} \ 3$
								$a(N)=2.05\times10^{-4}$, $a(O)=1.01\times10^{-5}$ DCO(gate B)=1.07 9.
847.0 2	76 2	1887.87	6+	1040.84	4+	E2	9.96×10 ⁻⁴	$\alpha(K)=0.000878 \ I3; \ \alpha(L)=9.85\times10^{-5} \ I4; \ \alpha(M)=1.708\times10^{-5} \ 24$
								$\alpha(N)=2.42\times10^{\circ}$ 4; $\alpha(O)=1.669\times10^{\circ}$ 24 DCO(gate C)=1.07 3.
866.9 <i>3</i>	91	4347.7	9(-)	3480.8	7(-)	E2	9.41×10 ⁻⁴	$\alpha(K)=0.000830\ 12;\ \alpha(L)=9.29\times10^{-5}\ 13;$ $\alpha(M)=1.612\times10^{-5}\ 23$
0001.0		20(0.4		0175.40	(7) ±		0.76 10-4	α (N)=2.28×10 ⁻⁶ 4; α (O)=1.578×10 ⁻⁷ 23 DCO(gate C)=1.07 12.
893.1 3	14 1	3068.4	('/)*	2175.40	(5)	E2	8.76×10 ⁻⁴	$\alpha(\mathbf{K})=0.000772 \ II; \ \alpha(\mathbf{L})=8.63\times10^{-5} \ I3; \\ \alpha(\mathbf{M})=1.497\times10^{-5} \ 2I \\ \alpha(\mathbf{N})=2.12\times10^{-6} \ 3; \ \alpha(\mathbf{O})=1.460\times10^{-7} \ 3I \\ \alpha(\mathbf{N})=2.12\times10^{-6} \ 3I \\ \alpha(\mathbf{N})=2.12\times10^{-6} \ 3I \\ \alpha(\mathbf{N})=2.12\times10^{-6} \ 3I \\ \alpha(\mathbf{N})=2.12\times10^{-6} \ 3I \\ \alpha(\mathbf{N})=2.12\times10^{-7} \ 3I \ 3$
								DCO(gate C)=0.93 7.
937 1	31	4444.1	(9 ⁻)	3506.8	7-			
950.6 <i>4</i> 961 7 <i>4</i>	4 I 8 I	4973.2	(10) 10^{-}	4022.6	(8) 8-	F2	7.35×10^{-4}	$\alpha(K) = 0.000648.9; \alpha(L) = 7.22 \times 10^{-5}.11;$
<i>J</i> 01. <i>7 4</i>	0 1	4900.4	10	5940.7	0	L2	7.55×10	$\alpha(\mathbf{M}) = 1.251 \times 10^{-5} \ 18$ $\alpha(\mathbf{M}) = 1.773 \times 10^{-6} \ 25; \ \alpha(\mathbf{O}) = 1.234 \times 10^{-7} \ 18$
								$DCO(gate B)=1.07 \ 10.$
1013.7 6	11 1	5361.4	11 ⁽⁻⁾	4347.7	9(-)	E2	6.50×10^{-4}	α (K)=0.000574 8; α (L)=6.38×10 ⁻⁵ 9; α (M)=1.105×10 ⁻⁵ 16
								α (N)=1.566×10 ⁻⁶ 22; α (O)=1.094×10 ⁻⁷ 16 DCO(gate C)=1.00 14.
1017 [†] <i>I</i>	31	2057.3	$(0)^{+}$	1040.84	4^+			
1017.94	12 Z 48 3	4080.4 2908.6	(9) ⁺ 8 ⁺	3068.4 1887.87	(7)* 6 ⁺	E2	6.40×10^{-4}	$\alpha(K) = 0.000565 8; \alpha(L) = 6.27 \times 10^{-5} 9;$
102017 0	10 0	200010	0	100/10/	0		0110/110	$\alpha(M) = 1.087 \times 10^{-5} \ 16$
								$\alpha(N)=1.541\times10^{-6}\ 22;\ \alpha(O)=1.077\times10^{-7}\ 15$
1041.7.3	71	1449.14	$(3)^{+}$	407.00	2+	D+O		DCO(gate D)=1.15 6. DCO(gate A)=0.85 9.
1052.5 5	6 1	7041.7	14-	5989.2	12-	E2	5.97×10 ⁻⁴	$\alpha(K)=0.000527 \ 8; \ \alpha(L)=5.84\times10^{-5} \ 9; \ \alpha(M)=1.013\times10^{-5} \ 15$
								α (N)=1.436×10 ⁻⁶ 21; α (O)=1.005×10 ⁻⁷ 15 DCO(gate C)=0.99 20.
1071 [†] 1	21	3128.2	6-	2057.3			1	
1072 <i>I</i>	5 1	8113.7	16-	7041.7	14-	E2	5.73×10 ⁻⁴	$\alpha(K) = 0.000506 \ 8; \ \alpha(L) = 5.60 \times 10^{-5} \ 8; \alpha(M) = 9.71 \times 10^{-6} \ 14$
								$\alpha(N)=1.37/\times10^{-6}$ 20; $\alpha(O)=9.64\times10^{-6}$ 14 DCO(gate C)=1.01 16
1080.8 5	8 1	5989.2	12-	4908.4	10-	E2	5.63×10 ⁻⁴	$\alpha(K)=0.000497\ 7;\ \alpha(L)=5.50\times10^{-5}\ 8;$ $\alpha(M)=9.53\times10^{-6}\ 14$
								α (N)=1.351×10 ⁻⁶ <i>19</i> ; α (O)=9.47×10 ⁻⁸ <i>14</i> DCO(gate C)=1.21 19.
1106 2	21	5550.1	(11 ⁻)	4444.1	(9-)		T D D D D D	
1109 1	10 2	5195.4	$(11)^{+}$	4086.4	(9)+	E2	5.32×10^{-4}	$\alpha(K)=0.000469\ 7;\ \alpha(L)=5.19\times10^{-3}\ 8;$

Continued on next page (footnotes at end of table)

(HI,xnγ) **1997Ru03** (continued)

$\gamma(^{82}$ Zr) (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{\#}$	Comments
1127 /	2.1	(100.2	(12-)	4072.2	(10-)			$\alpha(M)=8.99\times10^{-6}$ 13 $\alpha(N)=1.275\times10^{-6}$ 18; $\alpha(O)=8.94\times10^{-8}$ 13; $\alpha(IPF)=8.6\times10^{-7}$ 3 DCO(gate C)=0.94 13.
1127 <i>1</i> 1128.3 <i>3</i>	39 2	4036.9	(12) 10^+	4973.2 2908.6	(10) 8 ⁺	E2	5.13×10 ⁻⁴	$\alpha(K)=0.000451\ 7;\ \alpha(L)=4.99\times10^{-5}\ 7;$ $\alpha(M)=8.65\times10^{-6}\ 13$ $\alpha(N)=1.227\times10^{-6}\ 18;\ \alpha(O)=8.61\times10^{-8}\ 12;$ $\alpha(IPF)=1.53\times10^{-6}\ 3$ DCO(cate D)=1.03 4
1135.2 <i>3</i> 1152 <i>1</i> 1174 4 7	5 <i>I</i> 3 <i>I</i> 10 <i>I</i>	2175.40 7687.9 6535 9	$(5)^+$ (15^-) $13^{(-)}$	1040.84 6535.9 5361 4	4^+ 13 ⁽⁻⁾ 11 ⁽⁻⁾			DCO(gate D)=1.05 4.
1176.5 4	31 2	5213.4	12+	4036.9	10+	E2	4.72×10 ⁻⁴	$\alpha(K)=0.000412 \ 6; \ \alpha(L)=4.55\times10^{-5} \ 7;$ $\alpha(M)=7.88\times10^{-6} \ 11$ $\alpha(N)=1.118\times10^{-6} \ 16; \ \alpha(O)=7.86\times10^{-8} \ 11;$ $\alpha(IPF)=5.02\times10^{-6} \ 9$ DCO(gate D)=1.03 4.
1180 [†] 1 1211 1 1225 1 1245 1	3 <i>1</i> 7 <i>1</i> 4 <i>1</i> 2 <i>1</i>	3068.4 6406.4 9338.7 7345.2	$(7)^+$ (13^+) (18^-) (14^-)	1887.87 5195.4 8113.7 6100.2	6^+ (11) ⁺ 16 ⁻ (12 ⁻)			E_{γ} : calculated from E(level).
1252 1	71	9111.7	18+	7859.7	16+	E2	4.25×10 ⁻⁴	$\alpha(K)=0.000361 5; \alpha(L)=3.97\times10^{-5} 6;$ $\alpha(M)=6.88\times10^{-6} 10$ $\alpha(N)=9.77\times10^{-7} 14; \alpha(O)=6.89\times10^{-8} 10;$ $\alpha(IPF)=1.67\times10^{-5} 3$ DCO(gate D)=1.10 16.
1274 <i>I</i> 1277.3 <i>3</i>	3 <i>1</i> 22 <i>1</i>	7680.4 6490.7	(15) ⁺ 14 ⁺	6406.4 5213.4	(13 ⁺) 12 ⁺	E2	4.13×10 ⁻⁴	$\alpha(K)=0.000346 \ 5; \ \alpha(L)=3.80\times10^{-5} \ 6; \\ \alpha(M)=6.59\times10^{-6} \ 10 \\ \alpha(N)=9.36\times10^{-7} \ 14; \ \alpha(O)=6.60\times10^{-8} \ 10; \\ \alpha(IPF)=2.19\times10^{-5} \ 4 \\ DCO(gate \ D)=1.04 \ 6.$
1327 ^{&} 1 1344 1	2 <i>1</i> 3 <i>1</i>	9234.9? 7750.4	(17^{-}) (15^{+})	7907.9? 6406.4	(15^{-}) (13^{+}) (15^{-})			
1368.9 4	2 <i>I</i> 15 <i>I</i>	9046.9? 7859.7	(17) 16 ⁺	6490.7	(13) 14 ⁺	E2	3.82×10 ⁻⁴	$\alpha(K)=0.000299 5; \alpha(L)=3.28\times10^{-5} 5;$ $\alpha(M)=5.69\times10^{-6} 8$ $\alpha(N)=8.08\times10^{-7} 12; \alpha(O)=5.72\times10^{-8} 8;$ $\alpha(IPF)=4.32\times10^{-5} 7$ DCO(gate D)=1.02 13.
1372 ^{&} 2 1379 <i>1</i>	3 <i>1</i> 4 <i>1</i>	7907.9? 10490.7	(15 ⁻) (20 ⁺)	6535.9 9111.7	13 ⁽⁻⁾ 18 ⁺			
1390 ^{&} 2 1399 <i>1</i> 1414 <i>1</i>	2 <i>1</i> 6 <i>1</i> 3 <i>1</i>	9070? 3287.3 10752 7	$(17)^+$ (6 ⁻) (20 ⁻)	7680.4 1887.87 9338 7	$(15)^+$ 6^+ (18^-)			
1433 ^{&} 2 1439 <i>I</i>	21	9183? 4347 7	$(17)^+$ $9^{(-)}$	7750.4 2908 6	(15 ⁺) (15 ⁺) 8 ⁺			
1461 2 1502 <i>I</i>	2 <i>I</i> 3 <i>I</i>	9452.8 7992.5	(18 ⁺) (16 ⁺)	7992.5 6490.7	(16 ⁺) 14 ⁺			
1593.0 [@] 3	8 [@] 1	3480.8	$7^{(-)}$	1887.87	6+	(E1)	4.44×10^{-4}	α (K)=0.0001121 <i>16</i> ; α (L)=1.209×10 ⁻⁵ <i>17</i> ;

Continued on next page (footnotes at end of table)

1997Ru03 (continued) $(HI,xn\gamma)$

$\gamma(^{82}$ Zr) (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	a#	Comments
								$\alpha(M)=2.09\times10^{-6} 3$ $\alpha(N)=2.98\times10^{-7} 5; \alpha(O)=2.13\times10^{-8} 3;$ $\alpha(IPF)=0.000317 5$ DCO(gate C)=0.67 17.
1593 [@] 1	3 [@] 1	9452.8	(18^{+})	7859.7	16+			
1612 ^{&} 2	21	12365?	(22^{-})	10752.7	(20 ⁻)			
1619 <mark>&</mark> 2	11	3506.8	7-	1887.87	6+			
1636 <i>1</i>	3 1	12126.7	(22^{+})	10490.7	(20^{+})			
1651 ^{&} 1	1 1	2691.6?	(4 ⁻)	1040.84	4+			
1750.7 <i>3</i>	4 1	2791.6	5(-)	1040.84	4+	(E1)	5.47×10^{-4}	$\alpha(K)=9.63\times10^{-5}$ 14; $\alpha(L)=1.037\times10^{-5}$ 15; $\alpha(M)=1.79\times10^{-6}$ 3
								α (N)=2.55×10 ⁻⁷ 4; α (O)=1.83×10 ⁻⁸ 3; α (IPF)=0.000439 7 DCO(acta B)=0.46 11
1816.1 2	91	2856.99	5-	1040.84	4+	(E1)	5.90×10^{-4}	$\alpha(K)=9.09\times10^{-5} \ 13; \ \alpha(L)=9.79\times10^{-6} \ 14; \ \alpha(M)=1.693\times10^{-6} \ 24$
								$\alpha(N)=2.41\times10^{-7}$ 4; $\alpha(O)=1.726\times10^{-8}$ 25; $\alpha(IPF)=0.000487$ 7
1886 2	21	14013	(24^{+})	12126 7	(22^{+})			DCO(gate B)= $0.4/7$.
2107 & 2	2 I 1 I	161202	(24^+)	14012	(24^+)			
210/23	11	16120?	(26')	14013	(24 ')			

[†] Complex.

[‡] The expected DCO ratios are 1.0 for a stretched Q transition and $\neq 0.5$ -0.6 for stretched d. Q are taken as E2's as mostly M2 are unlikely on basis of RUL. D are taken as E1 by level-scheme placement.

[#] Additional information 1.
[@] Multiply placed with intensity suitably divided.

[&] Placement of transition in the level scheme is uncertain.

 $^{82}_{40}\mathrm{Zr}_{42}$ -6

(HI,xnγ) 1997Ru03

(HI,xnγ) 1997Ru03 Legend Level Scheme (continued) $\begin{array}{l} I_{\gamma} < & 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma & \text{Decay (Uncertain)} \end{array}$ ٠ Intensities: Type not specified • @ Multiply placed: intensity suitably divided • ---- $\Big| \Big|_{\delta_{\delta_{0}}\delta_{\delta_{2}}}^{I_{43_{0}}}$ <u>9(-)</u> 4347.7 $|^{+}_{+}|^{+}_{2\theta_{3}}|^{+}$ 1 6:2101 + ^{ري}ني ليني في ا . - Q - 1 4086.4 4036.9 (9)+ $\frac{10^+}{(8^-)}$ 0.16 ps 4 8-8 4022.6 8 $\frac{1}{1} \frac{1}{1} \frac{1}$ 3946.7 1 400 / 100 3506.8 $\frac{7^{-}}{7^{(-)}}$ 3480.8 1390 | 396 | 210 | $| \frac{1}{36.6} | \frac{3.6.6}{1.0} | \frac{3.6.6}{1.0} | \frac{1}{0.0} | \frac{1}{$ (6⁻) 4 3287.3 ß 1803 693. / 8 3128.2 $\frac{6^{-}}{(7)^{+}}$ ß 3068.4 1050 1816,1 · 000 . Ð 2908.6 8+ 0.22 ps 6 2856.99 $\frac{\frac{5^{-}}{5^{(-)}}}{(4^{-})}$ ¥ 2791.6 ¥ 3 _. _2691.6 $\frac{1}{2^{2_{6_0}}}^{I_{3_{5_2}}}{}_{3_{6_0}}^{I_{3_{5_2}}}$ (5)+ 2175.40 4 8470 1 0 2057.3 <u>1887.87</u> 0.5 ps 2 6+ $= \frac{1_{\alpha_{l}, \gamma}}{3_{\theta_{l}, \gamma}} \frac{1_{\alpha_{l}, \gamma}}{2_{\lambda}} 0_{\lambda} 0_{\gamma}$ $(3)^+$ 1449.14 + 53.9 22 100 -٦ ⁶33,8 4 10<u>6</u>0.87 _ _ _ _ _ _ _ _ _ _ _ _ _ 4+ - i-1040.84 3.3 ps 7 + 40₂₀ £2 120 407.00 22 ps 9 2^{+} 0.0 0^+

 $^{82}_{40}$ Zr₄₂

7

(HI,xnγ) 1997Ru03

 $^{82}_{40} Zr_{42}$