			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019
Q(β ⁻)=-7946 8; S(n)=125 1989Ku11: ¹² C(⁷² Ge,2nγ) 1979A119: Measured $\sigma(\theta)$ Isotope shift, RMS radii, H	553 7; S(p)=7842 d b, E=215 MeV. Tra , neutron time-of-f hyperfine structure	8; Q(α)=-4257 6 201 unsient-field method, ded light, for g.s. in (³ He,n). studies: 1993He12, 199	7Wa10 uced g-factors. , E=25.4 MeV,, Enriched 3Hi11, 1993Ku19, 1994H	target. 3u06, 1994Lo12, 1990Bu12 (also
1988Si06), 1987Ea01	(also 1986Ea01), 1	1987An02 (also 1986An.	39).	
Theoretical calculations:				
2016Da01 SDB band-head	1 spin.			
2015So26 Low lying lovel	iss rins radii.	ting hagan madal		
2013Sa20 Low-Tyllig level 2014Zh43 Deformation pa	s, bands pri interac	ting boson model.		
2014En45 Deformation pa	Fal4 spin-depend	ence of g-factors in gs h	and	
2008Mi17 Half-life shell r	nodel	enec of g-factors in gs o	and.	
$2003Me26 2^+$ states, g-fac	ctors.			
2003ReZZ Studied SDB.				
2002Bu13 SDB transition	quadrupole mome	nts.		
2002Li18 SDB transition e	energies, moement	s of inertia.		
1999Gu11 Calculated clus	ter-decay probabil	ity.		
1999Sa46 Hartree-Fock pl	us RPA.			
1997Da16 SD band data, o	cranked-shell mode	el.		
1995Ba45 RMS radii, mea	an field.			
1995Ba/8 level energy vs	deformation, cons	trained Hartree-Fock.		
1995La07 relativistic mean	n-filed theory.			
1994D019 levels, mean ne	210. Hartree Fock			
19941w05 level energies, I				
1991Ch01 structure of sup	erdeformed GDR			
1991Bo27 1985Bo36 198	SNa02 microscon	ic analysis of deformatio	n	
1990Ba11 1983Bu09 198	4He07 1995Ke09	1996Ca10 1997Su08 ir	nteracting-boson model	
1982Fu03 cranked-shell m	odel	, 199000010,1997000001	teraeting boson model.	
1983Ta03 pairing vibration	ns.			
1980Ca23 Hartree-Fock ca	alculation of bindin	ng energy and charge rac	lius.	
1971Ki16, 1973Og01 shell	l-model calculation	ns.		

⁸²Sr Levels

Cross Reference (XREF) Flags

			A B C D	${}^{82}Y \beta^{+} decay = E \\ {}^{84}Sr(p,t) \\ {}^{56}Fe({}^{29}Si,2pn\gamma) = F \\ {}^{80}Kr(\alpha,2n\gamma) \\ {}^{52}Cr({}^{34}S,2p2n\gamma) = G \\ {}^{58}Ni({}^{30}Si,\alpha 2p\gamma),({}^{28}Si,4p\gamma):SD \\ {}^{70}Ge({}^{16}O,2n2p\gamma) $
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
0 ^{<i>d</i>}	0^{+}	25.35 d 3	ABCDEF	<i>%</i> ε=100

 $T_{1/2}$: from $T_{1/2}$ =25.36 d 3 (HPGe, 2009Pi02; Ge(Li) 1987Ho06), 25.34 d 2 (ic, 2009Pi02), 25.34 d 5 (1987Ju02). others: 25.55 d *15* (1978Gr17) 25.0 d 4 (1958Sa20), 25.5 d 5 (1953Kr10).

Continued on next page (footnotes at end of table)

⁸²Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	XREF	Comments
573.54 ^d 8	2+	8.9 ^{&} ps 4	ABCDEF	$\begin{split} &\Delta < r^2 > (^{88}\text{Sr} - ^{82}\text{Sr}) = 0.179 \text{ fm}^2 \ 24 \ (1990\text{Bu12}, 1988\text{Si06}); \ 0.182 \ \text{fm}^2 \ 6 \\ &(1988\text{Si06}, \ \text{deduced from data of } 1987\text{Ea01}, 1986\text{Ea01}); \ 0.169 \ \text{fm}^2 \ 13 \ \text{or} \\ &0.220 \ \text{fm}^2 \ 15 \ (1987\text{An02}, 1986\text{An39}). \\ &\Delta < r^2 > (^{83}\text{Sr} - ^{82}\text{Sr}) = -0.017 \ \text{fm}^2 \ 7 \ (1996\text{Li25}). \\ &\Delta < r^2 > (^{82}\text{Sr} - ^{81}\text{Sr}) = -0.053 \ \text{fm}^2 \ 8 \ (1996\text{Li25}). \\ &\Delta < r^2 > (^{82}\text{Sr} - ^{81}\text{Sr}) = -0.053 \ \text{fm}^2 \ 8 \ (1996\text{Li25}). \\ &\mu = +0.88 \ 38 \ (2014\text{Ku10}) \\ &g = +0.44 \ 19 \ (2014\text{Ku10}) \ \text{measured using the transient-field (tf) technique in inverse kinematics with perturbed angular correlation method in \\ & \ ^{12}\text{C}(^{78}\text{Kr}, 2\alpha\gamma). \ \text{Other } g = 0.47 \ 7 \ (2008\text{Yu04}, 2010\text{Fa08}); \ \text{values of } g \ \text{factors were read from figure 1 of } 2008\text{Yu04}. \\ &J^{\pi}: \ \text{L}(\text{p},\text{t}) = 2. \\ &T_{1/2}: \ \text{other: 10.7 ps} \ 21 \ \text{from } 1996\text{Jo05 In} \ ^{58}\text{Ni}(^{27}\text{Al}, 3\text{p}), \ \text{while studying} \end{split}$
1175 716 0	2+	758 - 24	ADCDEE	82 Y.
11/5./1° 8 1310.89 <i>13</i>	0^{+}	<3.5 ns	ABCDEF A E	$J^{*:} L(p,t)=2.$ $J^{\pi:} L(p,t)=0.$
4		P-		$T_{1/2}$: from $\gamma\gamma$ and $\beta\gamma$, ⁸² Y β^+ decay.
1328.54 ^{<i>a</i>} 10	4+	1.0 ^{cc} ps 2	BCD F	 μ=+2.1 <i>16</i> (2014Ku10) g=+0.53 <i>39</i> (2014Ku10) measured using the transient-field (tf) technique in inverse kinematics with perturbed angular correlation method in ¹²C(⁷⁸Kr,2αγ). Other g=0.46 8 (2008Yu04,2010Fa08); values of g factors were read from figure 1 of 2008Yu04. J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ).
1688.96 ^b 11	3+		BCD F	J ^{π} : J=3 from $\gamma(\theta)$ of 1115 γ in (¹⁶ O,2n2p γ); E1 γ from 4 ⁻ .
1865 5	2+	1 0 ^g	A E	J^{π} : L(p,t)=2.
1996.02° 10	4+	1.3 ^{cc} ps 4	BCD F	J^{*} : stretched E2 cascade indicated by angular distribution and polarization in $({}^{16}\text{O},2\text{n}2\text{p}\gamma)$.
2195 5	2+		E	J^{π} : L(p,t)=2.
2229.47" 11	6+	0.37 ps +15-11	BCD F	 μ=3.5 5 (2008 Yu04) μ: From g=0.58 8 (2008 Yu04,2010 Fa08) measured by transient-magnetic field ion-implantation perturbed angular distribution method in ⁵⁸Ni(²⁸Si,4pγ); values of g factors were read from figure 1 of 2008 Yu04. J^π: stretched E2 cascade indicated by angular distribution and polarization in (¹⁶O,2n2pγ).
2401 82f 10	2-		D DE	$T_{1/2}$: other value: 0.9 ps <i>I</i> from RDM, ⁷⁶ Ge(¹⁶ O,2n2p γ).
2401.82^{5} 10 2525 80 ^b 12	3 5+		B DE	$J^{*}: L(p,t)=5.$
2665 5	0^{+}		E	J^{π} : L(p,t)=0.
2817.31 ^{<i>f</i>} 11	5-	3.0 ^{&} ps 6	BCDEF	μ =+2 2 (2014StZZ) J ^{π} : from $\gamma(\theta)$ and polarization in (¹⁶ O,2n2p γ) indicating E1 transition to 4 ⁺ . μ : From g-factor=+0.3 4 (1989Ku11) transient-field method
2824.40 ^j 12	4-		BCD	J^{π} : based on $\gamma(\theta)$ and polarization of the 1136-keV decay γ , 70 Ge(16 O.2p2n γ).
2836.26 ^c 12	6+	0.6 ^{&} ps 4	BCD F	J^{π} : stretched E2 cascade indicated by angular distribution and polarization in $({}^{16}O,2n2p\gamma)$.
2885 <i>5</i> 2920 <i>5</i>	(2 ⁺)		E E	J^{π} : L(p,t)=(2).
3006.91 ^{<i>i</i>} 12	4-		В	J^{π} : D γ 's to 3 ⁺ and 4 ⁺ levels; decays to 3 ⁻ .
3073.28 ^g 14	(5 ⁻)		В	J ^{<i>n</i>} : tentative assignment from the seven linking gammas which connect this state to 4 ⁺ , 6 ⁺ , 5 ⁻ , 6 ⁻ , and 7 ⁻ states. The four DCO ratios measured in $(^{29}\text{Si},2\text{pn}\gamma)$ are consistent with this assignment.

Continued on next page (footnotes at end of table)

⁸²Sr Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} @	XREF	Comments
3086.23 ^j 12	6-		BCD	J ^{π} : γ to (5) ⁻ shows Δ J=1 angular distribution, (¹⁶ O,2p2n γ); γ to 4 ⁻ is consistent with stretched E2.
3142.30 ^h 22	(5 ⁻)		В	J ^{π} : fed by 465 γ from 7 ⁻ , and decays to 4 ⁺ .
3242.82 ^d 12	8+	0.24 ps +10-6	BCD F	μ =6.6 <i>10</i> (2008Yu04) μ : From g=0.82 <i>12</i> (2008Yu04,2010Fa08) measured by transient-magnetic field ion-implantation perturbed angular distribution method in ⁵⁸ Ni(²⁸ Si,4p γ); values of g factors were read from figure 1 of 2008Yu04. J ^{π} : stretched E2 γ to 6 ⁺ state. g-factor=+0.7 <i>1</i> (1989Ku11) transient-field method. T _{1/2} =0.76 ps <i>14</i> (1989Ku11)
3339.57 ⁱ 12	6-		B F	$\mu = +5.4 \ 6$
3176 06 ^b 15	7+		RCD	μ . 110iii g-ractor- ± 0.9 <i>I</i> (1989Ku11), transient-neid method.
3511.15 <i>13</i>	(7) ⁻		CD	J ^{π} : stretched E2 γ cascade indicated by angular distribution and polarization in (¹⁶ O,2n2p γ).
3525.75 ^{<i>f</i>} 12	7-		BCD	J ^{π} : from $\gamma(\theta)$ in (¹⁶ O,2n2p γ), consistent with DCO ratios of decay γ 's obtained in (²⁹ Si,2pn γ).
3565.75 ⁸ 13	7-		BCD	J ^{π} : DCO ratio of 801 γ from 9 ⁻ state is consistent with Q.
3607.94 ^h 13	7-		BCD	J ^{π} : DCO ratio of 758 γ from 9 ⁻ state is consistent with Q.
3622.78 ^c 12	8+	0.7 ^{&} ps 4	BCD F	μ =+5.6 8 (2014StZZ) J ^{π} : stretched E2 cascade indicated by angular distribution and polarization in (¹⁶ O,2n2p γ). μ : From e-factor=+0.7 <i>I</i> (1989Ku11), transient-field method.
3686.07 ^e 15	(8 ⁺) [#]		BCD F	J^{π} : $\gamma(\theta)$ indicates probable $\Delta J=0$ transition to 8 ⁺ . DCO ratio of γ to 6 ⁺ is consistent with Q.
4033.49 ⁱ 15	8-		В	J ^{π} : DCO ratio of γ to 6 ⁻ is consistent with Q.
4142.60 ^j 14 4248.4 10	8-		B C	J^{π} : stretched E2 γ to 6 ⁻ state.
4350.30 ^d 15	10^{+}	0.14 ps +6-4	BCD F	J ^{π} : DCO ratio of γ to 8 ⁺ is consistent with Q, M2 ruled out by RUL.
4366.82 ^{<i>f</i>} 14	9-		BCD	J^{π} : 841 γ to 7 ⁻ is consistent with Q.
4387.09 14	(9 ⁻)	0	CD	J ^{π} : stretched E2 cascade indicated by angular distribution in (¹⁶ O,2n2p γ).
4423.85 ^{<i>c</i>} 14	10+	0.9 ^{&} ps 2	BCD	μ =+11 5 (2014StZZ) J ^{π} : stretched E2 cascade indicated by angular distribution and polarization in (¹⁶ O,2n2p γ).
1172 858 11	0-		D	μ : From g-factor=+1.1 5 (1989Ku11), transient-field method.
4472.050 14 $4492.5^{b} 4$	9 9 ⁺		B	I^{π} : DCO ratio of χ to 7^{+} is consistent with O
$4637 34^{e} 18$	$(10^+)^{\#}$		BC	I^{π} : DCO ratio of 1395% to 8^+ state is consistent with O
$4909 39^{i}$ 18	$10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-$	0.36 ps + 11 - 8	BC	I^{π} : stretched F2 v to 8^{-} state
5237 4 j 4	10-	0.50 p5 111 0	R	s. succincu E2 y to o state.
5308.15 ^{<i>f</i>} 17 5333.8 15 5302.312 18	11-	0.30 ps +10-7	BCD C	J ^{π} : stretched E2 γ to 9 ⁻ state.
5427.12 ^c 17 5468.9 10 5479.098 25	12^+	0.33 ps +11-8	BCD B B	J^{π} : stretched E2 γ to 10 ⁺ state.
$5569.0^{d} 4$	12+	0.06 ps 6	BC	I^{π} : DCO ratio of γ to 10 ⁺ is consistent with O M2 ruled out by RUI
5738 2 ^e 5	$(12^+)^{\#}$	0.00 P3 0	BC	• . Dee faile of 7 to 10 is consistent with Q, 142 fund out by ROL.
5913.9^{i} 4	12-	0.27 ps + 11 - 8	BCD	J^{π} : stretched E2 γ to 10 ⁻ state.
6367.2 ^{<i>f</i>} 3 6450.1 11	13-	0.15 ps +8-6	BCD B	J^{π} : stretched E2 γ to 11 ⁻ state.

Continued on next page (footnotes at end of table)

⁸²Sr Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} @	XREF	Comments
6543.6 ^c 4	14+	0.25 ps +11-9	BCD	J^{π} : stretched E2 γ to 12 ⁺ state.
6556.4 18			С	
6564.8 ⁸ 4	(13 ⁻)		В	
6937.0 ^{<i>a</i>} 5	(14^{+})	0.04 ps +6-3	BC	
7066.5 ¹ 5 7534.6 11	14-	0.08 ps +5-4	BC B	J^{π} : stretched E2 γ to 12^{-} state.
7545.5 [†] 4 7788.2 ^g 5	15 ⁻ (15 ⁻)	0.12 ps 5	BC B	J ^{π} : stretched E2 γ to 13 ⁻ state. J ^{π} : DCO ratio of γ to (13 ⁻) state is consistent with Q, M2 ruled out by RUL.
7812.0 ^c 6 7936.1 20	16+	0.09 ps +5-4	BC C	J^{π} : stretched E2 γ to 14 ⁺ state.
8377.6 ⁱ 6	16-	0.14 ps 6	BC	J^{π} : stretched E2 γ to 14 ⁻ state.
8434.6 ^d 6	(16 ⁺)	<0.18 ps	BC	J^{π} : stretched E2 γ to (14 ⁺) state.
8842.0 ^f 7	17^{-}	0.08 ps 6	BC	J^{π} : stretched E2 γ to 15 ⁻ state.
9167.4 <mark>8</mark> 7	(17^{-})		В	
9237.8 7	18+	0.05 ps +7-4	BC	J^{π} : DCO ratio of γ to 16 ⁺ is consistent with Q, M2 ruled out by RUL.
94/8.1 23	(10-)	0.100	C	
9842.6° <i>12</i> 10061.6. <i>12</i>	(18) (18^+)	<0.19 ⁴⁴ ps	BC	
$10258 8 \frac{f}{9}$	(10^{-})	0.08 ps + 6 - 4	BC	
10230.0° J 10709.4 ⁸ 12	(19^{-})	0.00 p3 10 7	B	
10872.4 ^C 9	(20+)	<0.21 ^{<i>a</i>} ps	BC	
11379.6 ⁱ 16	(20 ⁻)		BC	
11798.4 ^f 10	(21 ⁻)	<0.06 ^{<i>a</i>} ps	BC	
11837.6? 16	(20 ⁺)		С	
12/58.8 13	(22 ⁺)		С	
13005./* 19	(22 ⁻)		BC	
13489.4 14	(23^{-})		BC	
14010 8 17	(24) (24^+)		c	
15409.4 17	(25)		c	
17246.9? 20	(26 ⁻)		С	
17616.5 20	(27)		C	
x ^K	J		G	Additional information 1. J^{π} : ≈ 18 from 2003Le08. Others: $J \approx (19)$ from 1995Sm08.
$1432.0 + x^{k} 10$	J+2		G	
$3027.0+x^{k}$ 15	J+4		G	
4783.0+x ^k 18	J+6		G	
$6703.1 + x^{k} 20$	J+8		G	
8780.1+x ^k 23	J + 10		G	
$11010.1 + x^{k} 25$	J+12		G	
13393+x ^{<i>k</i>} 3	J+14		G	
$15938 + x^{k} 3$	J+16		G	
18674+x? ^k 3	J+18		G	

[†] Levels with $\Delta E=5$ keV are from (p,t), all others are deduced from the adopted gammas. [‡] Within each band, the firm assignments come from DCO ratios in (²⁹Si,2pn γ), except as noted otherwise, whereas the uncertain assignments for the high energy members indicate that the DCO ratios are either not available or not conclusive.

82 Sr Levels (continued)

- [#] Tentative assignment in $(^{29}Si, 2pn\gamma)$ supported by DCO ratios; positive parity from decay to positive parity states only.
- [@] From DSAM in 56 Fe(29 Si,2pn γ), unless stated otherwise.
- [&] From recoil-distance Doppler shift, ${}^{66}Zn({}^{19}F,p2n\gamma)$ (1981DeYW).
- ^a Effective half-life, not corrected for direct or side feeding (1994Ta01).
- ^{*b*} Band(A): π =+.
- ^{*c*} Band(B): π =+.
- ^{*d*} Band(C): π =+.
- ^{*e*} Band(D): π =+.
- ^{*f*} Band(E): π =–. Yrast odd-spin band.
- ^g Band(F): π =-. Second odd-spin band.
- ^{*h*} Band(G): π =–. Third odd-spin band.
- ^{*i*} Band(H): π =–. Yrast even-spin band.
- ^{*j*} Band(I): π =-. Second even-spin band.
- ^{*k*} Band(J): SD band (1995Sm08,1998Yu01,2003Le08). Q(intrinsic)=3.54 +15-14 (1999Le56,2003Le08,2004La18), 4.5 9 (1998Yu01). β_2 =0.50 from Q(intrinsic)=4.5 (1999Le56), calculated Q(intrinsic)=3.3 2 (for ⁷⁰Ge+¹²C cluster), 5.6 2 (for ⁵⁴Cr+²⁸Si cluster) (2001Bu02). Percent population=1.0-1.5 (1995Sm08), ≈2.5 (1998Yu01), 0.63 (2003Le08). Probable configuration= $v5^2\pi5^1(\pi1/2[431] \alpha$ =-1/2) with π =-, α =1 (1998Yu01), $v5^1\pi5^0$ (1999Le56,2003Le08).

					Ad	opted Leve	els, Gammas (c	continued)
							$\gamma(^{82}\mathrm{Sr})$	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ ^{&}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{cf}	α^{e}	Comments
573.54	2+	573.64 [#] 10	100	0 0+	E2		0.00245	α (K)=0.00216 3; α (L)=0.000243 4; α (M)=4.07×10 ⁻⁵ 6 α (N)=5.07×10 ⁻⁶ 7; α (O)=3.16×10 ⁻⁷ 5 B(E2)(W.u.)=48.3 22
1175.71	2+	602.15 [#] 10	100 ^b 7	573.54 2+	M1(+E2)	+1.2 14	0.00196 24	B(M1)(W.u.) ≤ 0.012 ; B(E2)(W.u.) ≤ 49 α (K)=0.00173 21; α (L)=0.00019 3; α (M)=3.2×10 ⁻⁵ 5 α (N)=4.0×10 ⁻⁶ 6; α (O)=2.6×10 ⁻⁷ 3
		1175.6 <i>1</i>	10.4 8	0 0+	[E2]		4.07×10 ⁻⁴	B(E2)(W.u.)=0.15 5 α (K)=0.000356 5; α (L)=3.86×10 ⁻⁵ 6; α (M)=6.47×10 ⁻⁶ 9 α (N)=8.12×10 ⁻⁷ 12; α (O)=5.28×10 ⁻⁸ 8; α (IPF)=5.06×10 ⁻⁶ 8
1310.89	0^{+}	737.35 [‡] 10	100	573.54 2+				
1328.54	4+	754.9 1	100	573.54 2+	E2		1.15×10 ⁻³	B(E2)(W.u.)=109 22 α (K)=0.001020 15; α (L)=0.0001127 16; α (M)=1.89×10 ⁻⁵ 3 α (N)=2.36×10 ⁻⁶ 4: α (Q)=1.503×10 ⁻⁷ 21
1688.96	3+	359.9 <i>3</i> 512.9 2 1114.9 <i>1</i>	9 3 80 12 100 15	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
1865	2^{+}	688.9 [‡] 4	31 19	1175.71 2+				
		1291.0 [‡] 6	100 19	573.54 2+				
		1865.3 [‡] 15	31 19	$0 0^+$				
1996.02	4+	667.53 [#] 10	60 9	1328.54 4+	M1(+E2)	+0.3 7	0.00137 11	B(M1)(W.u.)=0.019 <i>10</i> ; B(E2)(W.u.) \leq 25 α (K)=0.00122 <i>10</i> ; α (L)=0.000132 <i>12</i> ; α (M)=2.22×10 ⁻⁵ <i>20</i> α (N)=2.79×10 ⁻⁶ <i>24</i> ; α (O)=1.82×10 ⁻⁷ <i>12</i>
		820.25 [#] 10	100 12	1175.71 2+	E2		9.34×10 ⁻⁴	B(E2)(W.u.)=34 <i>12</i> α (K)=0.000826 <i>12</i> ; α (L)=9.08×10 ⁻⁵ <i>13</i> ; α (M)=1.524×10 ⁻⁵ 22
								$\alpha(N)=1.91\times10^{-6}$ 3; $\alpha(O)=1.219\times10^{-7}$ 17
		1422.4 3	52	573.54 2+			4	
2229.47	6+	900.84# 10	100	1328.54 4+	E2		7.41×10 ⁻⁴	B(E2)(W.u.)= $1.2 \times 10^2 + 4 - 5$ α (K)= $0.000656 \ 10; \ \alpha$ (L)= $7.18 \times 10^{-5} \ 10; \ \alpha$ (M)= 1.205×10^{-5} 17
								$\alpha(N)=1.508\times10^{-6}$ 22; $\alpha(O)=9.70\times10^{-8}$ 14
2401.82	3-	712.4 [#] 1	100 <mark>b</mark> 8	1688.96 3+				
2525.80	5+	1828.4 [#] <i>I</i> 529.8 2 837.1 <i>I</i> 1197.1 2	29 ^b 8 13 4 100 22 21 6	$573.54 \ 2^+$ $1996.02 \ 4^+$ $1688.96 \ 3^+$ $1328 \ 54 \ 4^+$				
2817.31	5-	415.17 [#] 10	13^{b} 13	2401.82 3	[E2]		0.00655	α (K)=0.00576 8; α (L)=0.000664 10; α (M)=0.0001115 16 α (N)=1.377×10 ⁻⁵ 20; α (O)=8.31×10 ⁻⁷ 12

6

 $^{82}_{38}\mathrm{Sr}_{44}$ -6

L

					Adopt	ted Levels,	Gammas (contin	nued)		
γ ⁽⁸² Sr) (continued)										
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Ιγ ^{&}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{cf}	α^{e}	Comments		
2817.31	5-	1489.00 [#] 10	100 ^b 13	1328.54 4+	E1		3.59×10 ⁻⁴	B(E1)(W.u.)= 3.2×10^{-5} 10 α (K)=0.0001086 16; α (L)= 1.154×10^{-5} 17; α (M)= 1.93×10^{-6} 3 α (N)= 2.43×10^{-7} 4; α (O)= 1.602×10^{-8} 23; α (IPF)= 0.000237 4		
2824.40	4-	422.6 <i>3</i> 828.4 2	72 164	2401.82 3 ⁻ 1996.02 4 ⁺						
		1135.52 [#] 10	100 13	1688.96 3+	E1(+M2)	+0.03 5	2.11×10 ⁻⁴ 5	$\alpha(K)=0.000175 5; \alpha(L)=1.86 \times 10^{-5} 5; \alpha(M)=3.12 \times 10^{-6} 9$ $\alpha(N)=3.93 \times 10^{-7} 11; \alpha(O)=2.58 \times 10^{-8} 7;$ $\alpha(IPF)=1.430 \times 10^{-5} 22$		
		1494.9 <i>3</i>	52	1328.54 4+						
2836.26	6+	606.65 [#] 10	50 ^b 3	2229.47 6+	M1(+E2)	+0.2 3	0.00170 7	B(M1)(W.u.)=0.05 4; B(E2)(W.u.) \leq 28 α (K)=0.00150 6; α (L)=0.000163 8; α (M)=2.74×10 ⁻⁵ 13 α (N)=3.45×10 ⁻⁶ 16; α (O)=2.26×10 ⁻⁷ 8		
		840.24 [#] 10	100 ^b 8	1996.02 4+	E2		8.79×10 ⁻⁴	B(E2)(W.u.)=7.E+1 5 α (K)=0.000778 11; α (L)=8.54×10 ⁻⁵ 12; α (M)=1.434×10 ⁻⁵ 20 α (L)=1.70×10 ⁻⁶ 2; α (Q)=1.148×10 ⁻⁷ 16		
3006.91	4-	605.1 <i>1</i> 1010.7 2 1318.3 <i>3</i>	60 20 20 10 100 20	2401.82 3 ⁻ 1996.02 4 ⁺ 1688.96 3 ⁺				$u(\mathbf{N}) = 1.79 \times 10^{-5}$ s, $u(\mathbf{O}) = 1.146 \times 10^{-5}$ To		
3073.28	(5 ⁻)	1677.6 4 255.4 3 843.6 2 1077.4 2	40 <i>10</i> 7 7 64 <i>14</i> 100 <i>21</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
3086.23	6-	261.83 [#] 10 269.02 [#] 10 560.8 2	100 <i>9</i> 78 <i>9</i> 22 <i>4</i>	2824.40 4 ⁻ 2817.31 5 ⁻ 2525.80 5 ⁺						
3142.30	(5 ⁻)	1812.8 4	100	1328.54 4+			1			
3242.82	8+	1013.36# 10	100	2229.47 6+	E2		5.61×10 ⁻⁴	B(E2)(W.u.)=1.0×10 ² +3-5 α (K)=0.000497 7; α (L)=5.41×10 ⁻⁵ 8; α (M)=9.08×10 ⁻⁶ 13 α (N)=1.138×10 ⁻⁶ 16; α (O)=7.36×10 ⁻⁸ 11		
3339.57	6-	266.2 2 332.5 2 522.1 <i>I</i> 813.9 <i>I</i> 1110.3 2	4 <i>I</i> 8 2 100 <i>I</i> 2 16 3 16 3	3073.28 (5 ⁻) 3006.91 4 ⁻ 2817.31 5 ⁻ 2525.80 5 ⁺ 2229.47 6 ⁺						
3476.96	7+	951.15 [#] 10	100	2525.80 5+						
3511.15	(7)-	424 [@] g		3086.23 6-						
		694.04 10	100 7	2817.31 5-	E2		1.44×10^{-3}	α (K)=0.001273 <i>18</i> ; α (L)=0.0001413 <i>20</i> ; α (M)=2.37×10 ⁻⁵ <i>4</i> α (N)=2.96×10 ⁻⁶ <i>5</i> ; α (O)=1.87×10 ⁻⁷ <i>3</i>		

7

From ENSDF

						Adopte	ed Levels,	Gammas (cor	ntinued)
							$\gamma(^{82}\mathrm{Sr})$	(continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_f^{π}	Mult. ^C	δ^{cf}	α ^e	Comments
3511.15	(7) ⁻	1281.1 [#] 2	4.6 ^b 8	2229.47	6+				
3525.75	7-	439.88 [#] 10 451.9 3 707.9 2	8 2 4 1 7 2	3086.23 3073.28 2817.31	6 ⁻ (5 ⁻) 5 ⁻				
		1296.19 [#] 10	100 12	2229.47	6+	D(+Q)	+0.5 5		
3565.75	7-	479.3 2 492 7 4	176	3086.23 3073 28	6^{-} (5 ⁻)				
		748.3 2	14 1	2817.31	5-				
3607 94	7-	1336.5 2 465 4 2	100 <i>13</i> 30 8	2229.47	6^+ (5 ⁻)				
5007.91	,	522.09 [#] 10	100 14	3086.23	(3 ⁻)	(M1+E2)	-0.7 5	0.0027 3	α (K)=0.00234 22; α (L)=0.00026 3; α (M)=4.4×10 ⁻⁵ 5 α (N)=5.5×10 ⁻⁶ 6; α (O)=3.5×10 ⁻⁷ 3
		534.6 2	35 8	3073.28	(5^{-})				
		790.6 2	32.8	2830.20 2817.31	0 5-				
		1378.6 2	73 19	2229.47	6+				
3622.78	8+	379.96 [#] 10	8.8 ⁰ 9	3242.82	8+			2	
		786.36 [#] 10	100 ⁶ 7	2836.26	6+	E2		1.04×10^{-3}	B(E2)(W.u.)=1.0×10 ² 6 α (K)=0.000918 <i>13</i> ; α (L)=0.0001013 <i>15</i> ; α (M)=1.699×10 ⁻⁵ 24
									$\alpha(N)=2.12\times10^{-6}$ 3; $\alpha(O)=1.355\times10^{-7}$ 19
		1393.5 [#] 1	18 ^b 6	2229.47	6+	[E2]		3.31×10 ⁻⁴	B(E2)(W.u.)=1.0 7 α (K)=0.000249 4; α (L)=2.68×10 ⁻⁵ 4; α (M)=4.49×10 ⁻⁶ 7 α (N)=5.65×10 ⁻⁷ 8; α (O)=3.69×10 ⁻⁸ 6; α (IPF)=5.01×10 ⁻⁵ 7
3686.07	(8+)	443.28 [#] 10	100 15	3242.82	8+				
4033.49	8-	1456.2 [#] 3 507.9 3 693 9 1	36 <i>11</i> 8 2 100 22	2229.47 3525.75 3339.57	6+ 7- 6-				
4142.60	8-	534.7 2	26.8	3607.94	0 7 ⁻				
		577.0 2	31 8	3565.75	7- 7-				
		1056.3 <i>1</i>	8 3 100 23	3525.75 3086.23	/ 6 ⁻	E2 ^d		5.10×10^{-4}	α (K)=0.000452 7; α (L)=4.91×10 ⁻⁵ 7; α (M)=8.25×10 ⁻⁶ 12 α (N)=1.034×10 ⁻⁶ 15; α (O)=6.69×10 ⁻⁸ 10
4248.4		1005.6 [@]	100	3242.82	8+				
4350.30	10+	1107.47 [#] 10	100	3242.82	8+	(E2)		4.60×10 ⁻⁴	B(E2)(W.u.)=1.1×10 ² +4-5 α (K)=0.000406 6; α (L)=4.41×10 ⁻⁵ 7; α (M)=7.40×10 ⁻⁶ 11 α (N)=9.28×10 ⁻⁷ 13; α (O)=6.02×10 ⁻⁸ 9; α (IPF)=8.58×10 ⁻⁷ 13
4366.82	9-	758.8 [#] 1	30 ^b 3	3607.94	7-				

 ∞

⁸²₃₈Sr₄₄-8

L

$\gamma(^{82}Sr)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Ι _γ &	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^C	α^{e}	Comments
4366.82	9-	801.11 [#] 10	100 ^b 8	3565.75	7-	(E2)	9.91×10 ⁻⁴	α (K)=0.000876 <i>13</i> ; α (L)=9.65×10 ⁻⁵ <i>14</i> ; α (M)=1.620×10 ⁻⁵ <i>23</i> α (N)=2.02×10 ⁻⁶ <i>3</i> ; α (O)=1.293×10 ⁻⁷ <i>19</i>
		841.3 [#] 3	32 ^b 4	3525.75	7-			
4387.09	(9 ⁻)	876.0 [#] 1	100 ^b 18	3511.15	(7)-	(E2)	7.93×10^{-4}	α (K)=0.000702 <i>10</i> ; α (L)=7.69×10 ⁻⁵ <i>11</i> ; α (M)=1.291×10 ⁻⁵ <i>18</i> α (N)=1.616×10 ⁻⁶ <i>23</i> ; α (O)=1.037×10 ⁻⁷ <i>15</i>
		1144.20 [#] 10	88 <mark>b</mark> 7	3242.82	8+			
4423.85	10^{+}	801.11 [#] 10	100 12	3622.78	8+	(E2)	9.91×10^{-4}	B(E2)(W.u.)=78 22
								α (K)=0.000876 <i>13</i> ; α (L)=9.65×10 ⁻⁵ <i>14</i> ; α (M)=1.620×10 ⁻⁵ <i>23</i> α (N)=2.02×10 ⁻⁶ <i>3</i> ; α (O)=1.293×10 ⁻⁷ <i>19</i>
		1180.98 [#] 10	16 2	3242.82	8+	[E2]	4.04×10 ⁻⁴	α (K)=0.000353 5; α (L)=3.82×10 ⁻⁵ 6; α (M)=6.41×10 ⁻⁶ 9 α (N)=8.04×10 ⁻⁷ 12; α (O)=5.23×10 ⁻⁸ 8; α (IPF)=5.65×10 ⁻⁶ 8 B(E2)(W.u.)=1.8 5
4472.85	9-	907.0 <i>1</i> 947.2 <i>2</i>	62 8 44 <i>4</i>	3565.75 3525.75	7- 7-			
4402 5	0+	1230.3 2	100 8	3242.82	8^+			
4492.5 4637 34	9^{+} (10 ⁺)	1015.5 3	100	34/6.96	/ ' 10 ⁺			
4037.34	(10)	287.0 2	38 7	4350.30	10^{+}			
		951.2 2	100 10	3686.07	(8 ⁺)			
		1394.7 3	72 10	3242.82	8+			
4909.39	10^{-}	521.7 ^{@g}		4387.09	(9 ⁻)	1		
		875.9 1	100	4033.49	8-	E2 ^{<i>a</i>}	7.94×10 ⁻⁴	B(E2)(W.u.)= $1.4 \times 10^2 + 4 - 5$ α (K)= $0.000702 \ 10; \ \alpha$ (L)= $7.70 \times 10^{-5} \ 11; \ \alpha$ (M)= $1.292 \times 10^{-5} \ 18$ α (N)= $1.616 \times 10^{-6} \ 23; \ \alpha$ (O)= $1.037 \times 10^{-7} \ 15$
5237.4	10-	1094.8 <i>3</i>	100	4142.60	8-			
5308.15	11-	941.32 [#] 10	100	4366.82	9-	E2	6.67×10 ⁻⁴	α (K)=0.000590 9; α (L)=6.45×10 ⁻⁵ 9; α (M)=1.082×10 ⁻⁵ 16 α (N)=1.356×10 ⁻⁶ 19; α (O)=8.73×10 ⁻⁸ 13 B(E2)(W.u.)=1.2×10 ² +3-4
5333.8		1085.4 [@]	100	4248.4				
5392.31?		1005.43 ^{#g} 10	100	4387.09	(9 ⁻)			
5427.12	12+	1003.26 [#] 10	100	4423.85	10+	E2	5.74×10 ⁻⁴	B(E2)(W.u.)=80 +20-27 α (K)=0.000508 8; α (L)=5.54×10 ⁻⁵ 8; α (M)=9.30×10 ⁻⁶ 13 α (N)=1.165×10 ⁻⁶ 17; α (O)=7.53×10 ⁻⁸ 11
5468.9		1045 <i>1</i>	100	4423.85	10^{+}			
5479.09	(11^{-})	1006.2 3	100 7	4472.85	9 ⁻			
5569.0	12+	1128.8 J 1218 7 3	02 4 100	4350.30	10 ⁺	[F2]	3.83×10^{-4}	$\alpha(K) = 0.000330.5; \alpha(L) = 3.56 \times 10^{-5}.5; \alpha(M) = 5.98 \times 10^{-6}.9$
5739.0	(12+)	1100.0 4	100	1627 24	(10^{+})	[122]	5.05×10	$\alpha(N)=7.51\times10^{-7}$ 11; $\alpha(O)=4.89\times10^{-8}$ 7; $\alpha(IPF)=1.093\times10^{-5}$ 16
5013 0	(12^{-}) 12^{-}	1100.9 4	100	4037.34	(10^{-1})	E2d	5.73×10^{-4}	$B(E2)(W_{H}) = 1.0 \times 10^2 + 3.4$
3713.7	12	1004.3 3	100	4707.39	10	ĽZ	5.75×10	$D(L2)(W.u.) = 1.0 \times 10 + 7.5 - 4$

9

$\gamma(^{82}Sr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	\mathbf{E}_{f}	J_f^π	Mult. ^C	α^{e}	Comments
								$\alpha(K)=0.000507 \ 8; \ \alpha(L)=5.52\times10^{-5} \ 8; \ \alpha(M)=9.27\times10^{-6} \ 13$ $\alpha(N)=1.162\times10^{-6} \ 17; \ \alpha(Q)=7.51\times10^{-8} \ 11$
6367.2	13-	1059.0 2	100	5308.15	11-	E2	5.07×10^{-4}	$\alpha(K)=0.000449\ 7;\ \alpha(L)=4.88\times10^{-5}\ 7;\ \alpha(M)=8.20\times10^{-6}\ 12$
								$\alpha(N)=1.028\times10^{-6}$ 15; $\alpha(O)=6.66\times10^{-8}$ 10
6450.1		1023 <i>1</i>	100	5427.12	12+			$B(E2)(W.U.)=1.3\times10^{2}+0-8$
6543.6	14+	1116.5 3	100	5427.12	12+	E2 d	4.52×10^{-4}	B(E2)(W.u.)=62 +23-28
								$\alpha(K)=0.000399\ 6;\ \alpha(L)=4.33\times10^{-5}\ 6;\ \alpha(M)=7.27\times10^{-6}\ 11$ $\alpha(N)=9.11\times10^{-7}\ 13;\ \alpha(O)=5.91\times10^{-8}\ 9;\ \alpha(IPF)=1.133\times10^{-6}\ 19$
6556.4		1222.6 [@]	100	5333.8				
6564.8	(13 ⁻)	1085.7 <i>3</i>	100	5479.09	(11 ⁻)			-
6937.0	(14 ⁺)	1368.0 <i>3</i>	100	5569.0	12+	[E2]	3.35×10 ⁻⁴	$\alpha(K)=0.000258 \ 4; \ \alpha(L)=2.78\times10^{-5} \ 4; \ \alpha(M)=4.67\times10^{-6} \ 7 \\ \alpha(N)=5.87\times10^{-7} \ 9; \ \alpha(O)=3.84\times10^{-8} \ 6; \ \alpha(IPF)=4.35\times10^{-5} \ 7 \\ \Omega(D)=0.00000000000000000000000000000000000$
7066 5	1.4-	115762	100	5012.0	12-	Ead	4 22 × 10-4	$B(E2)(W,u) = 1.4 \times 10^{2} + 42 - 8$ $B(E2)(W,u) = 1.6 \times 10^{2} + 0.11$
/000.5	14	1132.0 3	100	3913.9	12	EZ	4.23×10	$\alpha(K) = 0.000372 6 \cdot \alpha(L) = 4.03 \times 10^{-5} 6 \cdot \alpha(M) = 6.76 \times 10^{-6} 10$
								$\alpha(N) = 8.49 \times 10^{-7} \ 12; \ \alpha(O) = 5.52 \times 10^{-8} \ 8; \ \alpha(IPF) = 3.01 \times 10^{-6} \ 5$
7534.6		991 <i>1</i>	100	6543.6	14^{+}			
7545.5	15-	1178.3 <i>3</i>	100	6367.2	13-	E2 ^d	4.06×10^{-4}	$B(E2)(W.u.)=1.0\times10^2 4$
								$\alpha(K)=0.0003545; \alpha(L)=3.84\times10^{-5}6; \alpha(M)=6.44\times10^{-6}9$
7788.2	(15^{-})	1223.4 <i>3</i>	100	6564.8	(13^{-})			$a(N)=8.08\times10^{-12}$; $a(O)=3.20\times10^{-5}$; $a(IPF)=3.55\times10^{-5}$
7812.0	16+	1268.4 4	100	6543.6	14+	E2 ^d	3.62×10^{-4}	B(E2)(W.u.)=9.E+1+4-5
								$\alpha(K)=0.0003035; \alpha(L)=3.27\times10^{-5}5; \alpha(M)=5.48\times10^{-6}8$
								$\alpha(N)=6.89\times10^{-7}$ 10; $\alpha(O)=4.49\times10^{-8}$ 7; $\alpha(IPF)=2.04\times10^{-5}$ 3
7936.1	1.6-	1379.6 [®]	100	6556.4	1.4-	Fad	2 40 10-1	
8377.6	16-	1311.1 4	100	7066.5	14-	$E2^{\alpha}$	3.48×10 ⁻⁴	$B(E2)(W.u.) = 49 22$ $\alpha(W) = 0.000282 4; \ \alpha(U) = 3.05 \times 10^{-5} 5; \ \alpha(W) = 5.11 \times 10^{-6} 8$
								$\alpha(\text{N})=0.0002824, \alpha(\text{L})=3.05\times10^{-5}, \alpha(\text{M})=3.11\times10^{-8}$ $\alpha(\text{N})=6.42\times10^{-7} 9; \alpha(\text{O})=4.19\times10^{-8} 6; \alpha(\text{IPF})=2.98\times10^{-5} 5$
8434.6	(16 ⁺)	1497.6 <i>3</i>	100	6937.0	(14^{+})	E2 ^d	3.26×10^{-4}	$\alpha(K)=0.000215 \ 3; \ \alpha(L)=2.31\times10^{-5} \ 4; \ \alpha(M)=3.88\times10^{-6} \ 6$
	. ,							$\alpha(N)=4.87\times10^{-7}$ 7; $\alpha(O)=3.19\times10^{-8}$ 5; $\alpha(IPF)=8.35\times10^{-5}$ 12
						d		B(E2)(W.u.)>20
8842.0	17-	1296.5 5	100	7545.5	15-	E2 ^{<i>a</i>}	3.53×10^{-4}	B(E2)(W.u.)=9.E+1.7 (W) 0.000200 4 (D) 2.10.10 ⁻⁵ .5 (M) 5.22.10 ⁻⁶ .8
								$\alpha(\mathbf{K})=0.000289 4; \ \alpha(\mathbf{L})=3.12\times10^{-5} 3; \ \alpha(\mathbf{M})=5.23\times10^{-5} 8$ $\alpha(\mathbf{N})=6.57\times10^{-7} 10; \ \alpha(\mathbf{O})=4.29\times10^{-8} 6; \ \alpha(\mathbf{IPE})=2.65\times10^{-5} 4$
9167.4	(17 ⁻)	1379.2 4	100	7788.2	(15 ⁻)			$u_{(1)} = 0.57 \times 10^{-10}, u_{(0)} = 4.29 \times 10^{-10}, u_{(11)} = 2.05 \times 10^{-10}$
9237.8	18+	1425.7 4	100	7812.0	16+	[E2]	3.27×10^{-4}	B(E2)(W.u.)=9.E+1+36-5
								$\alpha(K)=0.000237$ 4; $\alpha(L)=2.56\times10^{-5}$ 4; $\alpha(M)=4.29\times10^{-6}$ 6
								$\alpha(N) = 5.39 \times 10^{-7}$ 8; $\alpha(O) = 3.52 \times 10^{-8}$ 5; $\alpha(IPF) = 5.93 \times 10^{-5}$ 9

10

$\gamma(^{82}Sr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E_f	J_f^{π}	Mult. ^C	α^{e}	Comments
9478.1		1542 [@]	100	7936.1				
9842.6	(18 ⁻)	1465 <i>1</i>	100	8377.6	16-	[E2]	3.25×10 ⁻⁴	α (K)=0.000225 4; α (L)=2.42×10 ⁻⁵ 4; α (M)=4.05×10 ⁻⁶ 6 α (N)=5.10×10 ⁻⁷ 8; α (O)=3.34×10 ⁻⁸ 5; α (IPF)=7.19×10 ⁻⁵ 11 B(E2)(W.u.)>21
10061.6	(18^{+})	1626.9 [@]	100	8434.6	(16 ⁺)			
10258.8	(19 ⁻)	1416.8 5	100	8842.0	17-	[E2]	3.28×10 ⁻⁴	B(E2)(W.u.)=6.E+1 +3-5 α (K)=0.000240 4; α (L)=2.59×10 ⁻⁵ 4; α (M)=4.34×10 ⁻⁶ 6 α (N)=5.46×10 ⁻⁷ 8; α (O)=3.57×10 ⁻⁸ 5; α (IPF)=5.67×10 ⁻⁵ 8
10709.4	(19 ⁻)	1542 <i>1</i>	100	9167.4	(17^{-})			
10872.4	(20 ⁺)	1634.6 5	100	9237.8	18+	[E2]	3.44×10 ⁻⁴	$\alpha(K)=0.000181 \ 3; \ \alpha(L)=1.94\times10^{-5} \ 3; \ \alpha(M)=3.25\times10^{-6} \ 5 \ \alpha(N)=4.09\times10^{-7} \ 6; \ \alpha(O)=2.69\times10^{-8} \ 4; \ \alpha(IPF)=0.0001396 \ 20 \ B(E2)(W.u.)>11$
11379.6	(20^{-})	1537 <i>1</i>	100	9842.6	(18-)			
11798.4	(21 ⁻)	1539.6 5	100	10258.8	(19 ⁻)	[E2]	3.29×10 ⁻⁴	$\alpha(K)=0.000204 \ 3; \ \alpha(L)=2.19\times10^{-5} \ 3; \ \alpha(M)=3.67\times10^{-6} \ 6 \ \alpha(N)=4.61\times10^{-7} \ 7; \ \alpha(O)=3.02\times10^{-8} \ 5; \ \alpha(IPF)=9.96\times10^{-5} \ 14 \ B(E2)(W.u.)>51$
11837.6?	(20^{+})	1776 [@]	100	10061.6	(18^{+})			
12758.8	(22^{+})	1886.4 [@]	100	10872.4	(20^{+})			
13005.7	(22-)	1626 <i>1</i>	100	11379.6	(20-)			
13489.4	(23 ⁻)	1691 <i>1</i>	100	11798.4	(21 ⁻)			
14832.7?	(24)	1827 [@]	100	13005.7	(22 ⁻)			
14910.8	(24^{+})	2152 [@]	100	12758.8	(22^{+})			
15409.4	(25)	1920 [@]	100	13489.4	(23 ⁻)			
17246.9?	(26^{-})	2336 [@]	100	14910.8	(24^{+})			
17616.5	(27)	2207 [@]	100	15409.4	(25)			
1432.0+x	J+2	1432 <i>I</i>	100 a	Х	J			
3027.0+x	J+4	1595 <i>1</i>	100 ^a	1432.0+x	J+2			
4783.0+x	J+6	1756 <i>1</i>	100 ^a	3027.0+x	J+4			
6703.1+x	J+8	1920 <i>1</i>	100 ^{<i>a</i>}	4783.0+x	J+6			
8780.1+x	J+10	2077 1	100 ^{<i>d</i>}	6703.1+x	J+8			
11010.1+x	J+12	2230 1	1004	8780.1+x	J+10			
13393+x	J+14	2383 I	1004	11010.1+x	J+12			
13938+X 18674±v?	J+10 I⊥18	2040 I 2736 <mark>8</mark>	100 ⁴	13393+X 15038+v	J+14 I±16			

[†] From ⁵⁶Fe(²⁹Si,2pn γ), unless otherwise stated. For SD band, values are from ⁵⁸Ni(³⁰Si, α 2p γ),(²⁸Si,4p γ):SD. [‡] From ⁸²Y β ⁺ decay.

 $\frac{1}{1}$

 $\gamma(^{82}Sr)$ (continued)

From ⁷⁰Ge(¹⁶O,2n2pγ).

[@] From ${}^{52}Cr({}^{34}S,2p2n\gamma)$.

& γ branching from each level deduced from (²⁹Si,2pn γ), except as noted otherwise.

^{*a*} Relative intensity within the SD band.

^b From ${}^{70}\text{Ge}({}^{16}\text{O},2n2p\gamma)$.

^c From $\gamma(\theta)$ and linear polarization observed in (¹⁶O,2n2p γ), except as noted otherwise.

^d From DCO ratios obtained in 56 Fe(29 Si,2pn γ) and RUL.

^e Additional information 2.

- ^{*f*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^{*g*} Placement of transition in the level scheme is uncertain.

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{82}_{38}{
m Sr}_{44}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{82}_{38}{
m Sr}_{44}$

 $^{82}_{38}{
m Sr}_{44}$

18674+x

15938+x

13393+x

8780.1+x

6703.1+x

x

Adopted Levels, Gammas (continued)

 $^{82}_{38}{
m Sr}_{44}$

Band(G): $\pi = -$

3607.94

465 3142.30

 $\frac{7^{-}}{(5^{-})}$