⁸⁰Kr(*α*,2nγ) 1983Hi01

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019			

1983Hi01: E=28.7 MeV. Enriched target. Ge(Li), FWHM=3.5 keV at 1.33 MeV. Measured E γ , I γ , $\gamma\gamma$, angular distributions. 1981Fi03: E=28 MeV. Enriched target. Ge(Li), FWHM=1.5 keV at 1.1 MeV. Measured E γ , I γ , $\gamma\gamma$, angular distributions. The decay schemes of both authors are nearly identical. The energies of 1981Fi03 are systematically \approx 0.3% larger than those

observed in (¹⁶O,2n2p γ), while energies of 1983Hi01 are $\approx 0.06\%$ smaller than in (¹⁶O,2n2p γ). Other: 1982MaYu.

82Sr Levels

E(level)	$J^{\pi \dagger}$	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$
0 573.4 3 1175.4 4 1327.8 4	0^+ 2^+ 2^+ 4^+	1686.6 7 1994.7 5 2228.3 5 2814.5 9	3 ⁺ 4 ⁺ 6 ⁺ 5 ⁻	2835.3 5 3240.9 7 3336.6 10 3621.1 6	$6^+ \\ 8^+ \\ 6^- \\ 8^+$	3686.4 8 4348.7 10	(8 ⁺) 10 ⁺

[†] From Adopted Levels.

$\gamma(^{82}Sr)$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α [@]	Comments
445.5 <i>3</i>	2.1	3686.4	(8^{+})	3240.9 8+			
522.1 <i>3</i>	8.7	3336.6	6-	2814.5 5-			
573.4 <i>3</i>	100	573.4	2+	$0 0^{+}$	(E2)	0.00245	α (K)=0.00216 3; α (L)=0.000243 4;
							$\alpha(M) = 4.08 \times 10^{-5} 6$
							$\alpha(N)=5.07\times10^{-6} 8; \alpha(O)=3.16\times10^{-7} 5$
602.0 <i>3</i>	19	1175.4	2+	573.4 2+			
607.0 <i>3</i>	3.0	2835.3	6^{+}	2228.3 6+			
666.9 <i>3</i>	6.0	1994.7	4+	1327.8 4+			
754.3 3	62	1327.8	4+	573.4 2+	(E2)	1.16×10^{-3}	α (K)=0.001022 <i>15</i> ; α (L)=0.0001129 <i>16</i> ; α (M)=1.90×10 ⁻⁵ <i>3</i>
							$\alpha(N)=2.37\times10^{-6} 4; \alpha(O)=1.507\times10^{-7} 22$
785.8 <i>3</i>	7.6	3621.1	8+	2835.3 6+	(E2)	1.04×10^{-3}	α (K)=0.000920 <i>13</i> ; α (L)=0.0001015 <i>15</i> ; α (M)=1.703×10 ⁻⁵ <i>24</i>
							$\alpha(N)=2.13\times10^{-6}$ 3; $\alpha(O)=1.357\times10^{-7}$ 19
819.4 <i>4</i>	16	1994.7	4^{+}	1175.4 2+			
840.6 4	9.0	2835.3	6+	1994.7 4+			
900.5 <i>3</i>	35	2228.3	6+	1327.8 4+	(E2)	7.42×10^{-4}	$\alpha(K)=0.000656 \ 10; \ \alpha(L)=7.19\times10^{-5} \ 10; \ \alpha(M)=1.206\times10^{-5} \ 17$
							$\alpha(N)=1.510\times10^{-6}\ 22;\ \alpha(O)=9.70\times10^{-8}\ 14$
1012.6 5	20	3240.9	8+	2228.3 6+	(E2)	5.62×10^{-4}	$\alpha(K)=0.000498\ 7;\ \alpha(L)=5.42\times10^{-5}\ 8;$ $\alpha(M)=9.10\times10^{-6}\ 13$
							$\alpha(N)=1.140\times10^{-6}$ 16; $\alpha(O)=7.37\times10^{-8}$ 11
1107.8 7	2.9	4348.7	10+	3240.9 8+	(E2) [#]	4.59×10 ⁻⁴	$\alpha(K)=0.000406\ 6;\ \alpha(L)=4.41\times10^{-5}\ 7;$ $\alpha(M)=7.39\times10^{-6}\ 11$
							α (N)=9.28×10 ⁻⁷ 13; α (O)=6.02×10 ⁻⁸ 9; α (IPF)=8.67×10 ⁻⁷ 23
1113.2 6	4.2	1686.6	3+	573.4 2+			
1175.4 10	6.7	1175.4	2^{+}	$0 0^{+}$			
1486.7 8	14	2814.5	5-	1327.8 4+			

Continued on next page (footnotes at end of table)

80 Kr(α ,2n γ) 1983Hi01 (continued)

$\gamma(^{82}Sr)$ (continued)

- [†] From 1983Hi01.
 [‡] Stretched E2 cascade from angular distribution (1983Hi01).
 [#] Angular distribution prefers stretched Q cascade but is not very conclusive because of the large statistical errors.
 [@] Additional information 1.

 $^{82}_{38}{\rm Sr}_{44}$