82 Ga β^- decay 2016Te09,2016Al10

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	J. K. Tuli, E. Browne	NDS 157,260 (2019)	1-Mar-2019			

Parent: ⁸²Ga: E=0.0; $J^{\pi}=(2^{-})$; $T_{1/2}=0.600 \text{ s } 2$; $Q(\beta^{-})=12484 3$; $\%\beta^{-}$ decay=100

⁸²Ga-T_{1/2}: From Adopted Levels. Other: T_{1/2}=0.599 s 2 (2016A110); 0.604 s 11, from growth curve for (delayed) neutron activity assigned purely to ⁸²Ga β⁻n decay (2016Te09).

⁸²Ga- $\%\beta^-$ decay: $\%\beta^-=100$, $\%\beta^-n=22.2$ from 2016Te09.

Based on 2016Te09, 2016A110 in XUNDL. 2016Te09 compiled by B. Singh (McMaster), March 3, 2016; included 2017Ve01, June 23, 2017.

2016Al10 compiled by S. Kumar (Uiversity of Delhi) and B. Singh (McMaster), Oct. 8, 2018.

- 2016Te09: radioactive ion beam of ⁸²Ga at 30 keV was produced in photofission of ²³⁸U using UC_x pellets containing ²³⁸U. The photons were created by 50-MeV primary electron beam bombarding a Ta target heated up to $\approx 2000^{\circ}$ C. The Ga atoms were ionized with the Resonant Ionization Laser Ion source (RILIS) using a two-step ionization system. Extracted 30 keV ion beam was delivered to PARRNe on-line separator at ALTO ISOL facility. Mass-separated ⁸²Ga beam was then sent to β -decay counting station BEDO where it was collected on mylar tape at the center of the detection system of 4π ³He neutron counter TETRA, an HPGe detector for γ radiation and plastic $4\pi\beta$ array for electrons. Measured E γ , I γ , β spectrum, β -gated γ and β (neutron)-gated γ spectra, delayed neutrons, $\%\beta^-n$ and half-life of ⁸²Ga decay.
- 2016Al10: ⁸²Ga produced in the fission of ²³⁸UC_x. Target of 6 g/cm² thickness by a 50 MeV, proton beam from the Holifield Radioactive Ion beam facility (HRIBF) at Oak Ridge National Laboratory, followed by a two-step high-resolution mass separation. The radioactive ion beam was transmitted to the Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS), then implanted on a moving tape collector (MTC) surrounded by four HPGe detectors for γ rays and two plastic scintillators for β detection. Measured E γ , I γ , $\beta\gamma$ -coin, $\gamma\gamma$ -coin. Deduced level scheme of ⁸²Ge, β feedings and log *ft* values. Shell-model calculations.

1981Ho24: Mass separated fission products. Ge(Li), Si(Li). detectors. Measured E γ , I γ , $\gamma\gamma$.

⁸²Ge Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0+	4.0 s 7	T _{1/2} : From Adopted Levels.
1348.3 <i>1</i>	2+	0.58 ps 8	T _{1/2} ^{1/2} : From Adopted Levels. Additional information 1.
1951.52? 20			
2215.43 9	(2^{+})		
2286.61 15	4+		
2333.61 15	0^{+}		
2702.01 18			
2713.74 20			
2826.7? <i>3</i>			
3075.78 19			
3258.52 23			
3571.5? 5			
3848.5? <i>3</i>			
4220.95 23			
5617.82 23	$(1^{-}, 2^{-}, 3^{-})$		
6012.5 5	$(1^{-}, 2^{-}, 3^{-})$		
6062.7 4	$(1^{-}, 2^{-}, 3^{-})$		
6675.19 <i>23</i>	$(1^{-}, 2^{-}, 3^{-})$		
6818.7 <i>6</i>	$(1^-, 2^-, 3^-)$		
7195+x			E(level): S(n)(⁸² Ge)=7195 3 (2017Wa10); x<5289 4 from Q(β^-)(⁸² Ga decay)=12484 3 and S(n)(⁸² Ga).

[†] Deduced from $E\gamma$ data.

⁸²Ga-Q(β^{-}): From 2017Wa10.

82 Ga β^- decay 2016Te09,2016Al10 (continued)

⁸²Ge Levels (continued)

[‡] From ⁸²Ge Adopted Levels. For higher levels, adopted $J^{\pi} = (1^{-}, 2^{-}, 3^{-})$ assignments are from 2016Al10 based on possible allowed γ feeding from 2⁻ parent, according to theoretical Gamow-Teller strengths.

β^- radiations

E(decay)	E(level)	Ιβ ^{-†#}	$\log ft^{\ddagger}$	Comments
$(2.6 \times 10^3 \frac{\&}{27})$	7195+x	22.2		$I\beta^{-1}$: from 2016Te09.
(5665.3.31)	6818.7	1.1.3	6.0.1	av $E\beta = 2564.8.15$
(5808.8, 30)	6675.19	0.06.3	7.3 2	av $E\beta = 2634.5$ 15
(000000000)				$I\beta^{-}: < 0.2 (2016A110).$
(6421.3 30)	6062.7	1.1 3	6.3 1	av $E\beta = 2931.9 \ 15$
(6471.5 31)	6012.5	0.5 1	6.6 1	av $E\beta = 2956.2$ 15
· · · · · ·				$I\beta^{-}$; <0.7 (2016A110).
(6866.2 30)	5617.82	0.8 2	6.5 1	av $E\beta = 3147.9 \ 15$
. ,				$I\beta^{-}: \leq 0.9 \ (2016A110).$
(8263.1 30)	4220.95	2.0 4	6.5 1	av $E\beta = 3826.2 \ 15$
. ,				$\log ft = 7.1 5$ (2016A110).
(8635.5 30)	3848.5?	1.4 3	6.8 <i>1</i>	av $E\beta = 4007.0 \ 15$
(8912.5 31)	3571.5?	1.1 3	6.9 <i>1</i>	av $E\beta = 4141.4 \ 15$
(9225.5 30)	3258.52	5.59	6.3 1	av E β =4293.1 15
				$I\beta^{-1}$: 5.5 <i>1</i> (2016A110).
(9408.2 30)	3075.78	1.7 4	6.8 1	av E β =4381.7 15
$(9657.3^{\textcircled{0}}30)$	2826.7?	0.5 1	7.4 1	av $E\beta = 4502.4$ 15
($I\beta^{-}$: <0.5 (2016A110).
(9770.3 30)	2713.74	4.0 6	6.6 1	av $E\beta = 4557.1 \ 15$
· · · · · ·				$I\beta^{-}$: 4.0 8 (2016Al10).
(9782.0 30)	2702.01	4.4 9	6.5 1	av $E\beta = 4562.8 \ 15$
· · · · · ·				$I\beta^{-}$: 4.4 6 (2016Al10).
(10150.4 30)	2333.61	2.8 4	9.2^{1u} 1	av $E\beta = 4747.7 \ 15$
(,)				$I\beta^{-}$: 2.9 6 (2016A110).
(10197.4.30)	2286.61	2.8.2	9.2^{1u} 1	av $E\beta = 4770.6$ 15
()				$I\beta^{-}$: 2.8 8 (2016A110).
(10268.6 30)	2215.43	17 3	6.0 1	av $E\beta = 4798.4$ 15
(10532.5 30)	1951.52?	1.1 3	7.3 1	av $E\beta = 4926.1 \ 15$
(11135.7 30)	1348.3	30 5	5.9 1	av $E\beta = 5217.8 \ 15$
· · · · · ·				$I\beta^{-}$: 31 7 (2016A110).
$(12484.0^{@}30)$	0.0	<1.0	$>10.2^{1u}$	av $E\beta = 5885.0.15$
(-2.0	0.0			IB^- : estimated in 2016A110 from expected average log <i>ft</i> value of 9.5.8 for
				first-forbidden unique β transition.

[†] Deduced from transition intensity balances. Some of the Iβ values in 2016Al10 differ somewhat, as indicated in comments.

^{\ddagger} Deduced based on listed I β values.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

[&] Estimated for a range of levels.

$\gamma(^{82}\text{Ge})$

Iy normalization: Summed Iy to g.s.=78 2 using $\%\beta^-n=22$ 2 and <1.0 β feeding to the g.s.

Continued on next page (footnotes at end of table)

			⁸² Ga ß	⁻ decay	2016Te09,2016Al10 (continued)
				<u> </u>	(⁸² Ge) (continued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}^{\pi}_{f}$
415.4 <i>1</i>	2.6 1	2702.01		2286.61	4+
867.0 <i>1</i>	10.3 14	2215.43	(2^{+})	1348.3	2+
938.3 1	7.2 1	2286.61	4+	1348.3	2+
985.3 <i>1</i>	4.7 6	2333.61	0^{+}	1348.3	2+
1348.3 [#] 1	100 7	1348.3	2+	0.0	0+
1354 <i>1</i>	6.5 12	2702.01		1348.3	2+
1365.4 2	3.5 6	2713.74		1348.3	2+
1727.4 [‡] 2	1.5 4	3075.78		1348.3	2+
1910.2 2	10.9 12	3258.52		1348.3	2+
1951.5 ^{‡&} 2	1.8 4	1951.52?		0.0	0+
2215.43 [#] 2	18.5 37	2215.43	(2^{+})	0.0	0+
2714.3 9	3.2 5	2713.74		0.0	0+
2826.6 ^{‡&} 3	0.8 2	2826.7?		0.0	0+
2872.6 [‡] 2	3.3 5	4220.95		1348.3	2+
3076.3 [‡] 6	1.3 <i>3</i>	3075.78		0.0	0+
3360.6 [‡] <i>3</i>	1.8 4	6062.7	(1 ⁻ ,2 ⁻ ,3 ⁻)	2702.01	
3560.1 [‡] 5	1.8 4	6818.7	$(1^-, 2^-, 3^-)$	3258.52	
3571.4 ^{‡&} 5	1.8 4	3571.5?		0.0	0+
3848.4 ^{‡&} 3	2.3 4	3848.5?		0.0	0+
4269.4 [‡] 2	1.4 <i>3</i>	5617.82	$(1^{-}, 2^{-}, 3^{-})$	1348.3	2+

 $(1^-, 2^-, 3^-)$

 $(1^{-}, 2^{-}, 3^{-})$

1348.3

1348.3 2+

 2^{+}

[†] γ -ray data are from 2016A110, except where stated otherwise. [‡] γ observed by 2016A110. [#] Weighted averages from 2016A110 and 2016Te09.

0.9 2

0.10 4

4664.1[‡] 4

5326.7[‡] 2

[@] For absolute intensity per 100 decays, multiply by 0.60 4.

[&] Placement of transition in the level scheme is uncertain.

6012.5

6675.19

82 Ga β^- decay 2016Te09,2016Al10

