82 Zn β^- decay 2016Al10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019

Parent: ⁸²Zn: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=166$ ms *11*; $Q(\beta^-)=10617$ *4*; $\%\beta^-$ decay=100.0 ⁸²Zn-Q(β^{-}): From 2017Wa10.

⁸²Zn-T_{1/2}: From ⁸²Zn Adopted Levels.
2016A110: ⁸²Zn produced in the fission of ²³⁸U target of 6 g/cm² thickness by a 50 MeV proton beam from the Holifield

Radioactive Ion Beam Facility (hribf) at Oak Ridge National Laboratory, followed by two-step high-resolution mass separation. Measured Ey, Iy, $\beta\gamma$ coin, $\gamma\gamma$ coin, half-life of ⁸²Zn decay, and $\beta\beta$ -n. Deduced level scheme of ⁸²Ga.

82Ga Levels

E(level)	\mathbf{J}^{π}	$T_{1/2}^{\#}$	Comments
0.0	(2 ⁻)	0.600 s 2	J^{π} : 2016Al10 assigned firm 2 ⁻ by citing the laser spectroscopy work of 2012Ch51; however, this assignment is tentative as J=1 and 3 were not ruled out, and the parity is based only on a comparison of measured magnetic moment with shell-model predictions.
34.5 1	(2^{-})	<10 ns	J^{π} : See Adopted Levels, Gammas for $J^{\pi} = (2^{-}, 3^{-})$ Assignment.
140.7 3	(4 ⁻)	89 ns 9	
366.3 2	$(1^{-},0^{-})^{\ddagger}$		
529.7 <i>3</i>	$(0^{-},1^{-})^{\ddagger}$		
2978.6 4	(1+)		
3374+x			E(level): S(n)(82 Ga)=3374 4 (2017Wa10); x<7243 4 from Q(β^{-})(82 Zn decay)=10617 4.

[†] Adopted values as proposed in 2016A110, based on allowed or forbidden nature of the β transitions.

^{\ddagger} Possible first-forbidden β decay from J^{π}=0⁺ parent nuclide.

From Adopted Levels.

radiations

E(decay)	E(level)	Iβ ^{-†‡}	Log ft	Comments
$(4 \times 10^{3} @ 4) (7638 4) (10087 4)$	3374+x 2978.6 529.7	69 7 18 6 6.7 <i>1</i> 6	4.84 <i>15</i> 5.83 <i>11</i>	Iβ ⁻ : from measured %β ⁻ n=69 7 in 2016Al10. av Eβ=3526.4 20 av Eβ=4715.2 20
$(10251 \ 4)$ $(10476 \ 4)$ $(10583 \ 4)$	366.3 140.7 34.5	4 <i>3</i> <1.2 <3	6.1 <i>4</i> >6.7 >6.3	av $E\beta = 4794.4\ 20$ av $E\beta = 4903.7\ 20$ av $E\beta = 4955.1\ 20$
(10617 [#] 4)	0.0	<1.0	>9.2 ¹ <i>u</i>	av $E\beta$ =4980.8 20 I β^- : estimated by 2016A110 from expected average log <i>ft</i> value of 9.5 8 for first-forbidden unique β transition.

[†] Values should be considered as approximate feedings since some γ rays from higher energy levels may have been missed.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

[@] Estimated for a range of levels.

⁸²Zn β^- decay 2016Al10 (continued)

 $\gamma(^{82}\text{Ga})$

Iγ normalization: Summed γ-ray transition intensity to g.s. = 30% 7, using measured %β⁻n=69% 7 (2016A110) for ⁸²Zn decay, and <1% β⁻ feeding to the ⁸²Ga g.s.

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\#}$	Comments
x42 [†] x49 [†] x60 [†] x72 [†]	10.1 10	34.5	(2 ⁻)	0.0 (2 ⁻)	[M1]	1.394 23	24.2 25	%I γ =5.0 <i>13</i> α (K)=1.239 <i>21</i> ; α (L)=0.1344 <i>22</i> ; α (M)=0.0197 <i>4</i> α (N)=0.001030 <i>17</i> I(γ + <i>ce</i>): from the γ -transition intensity balance at 34.5. It appears to the evaluatorrs that I γ =24.2 <i>25</i> listed in Table I and Fig. 7 of 2016A110 is I γ +ce value, with the assumption of mult=M1 for 34.5 γ . Mult.: M1 is consistent with short half-life (<10 ns) of 34.5 level.
x72† x85† 140.7 <i>3</i>	1.4 6	140.7	(4 ⁻)	0.0 (2 ⁻)	[E2]	0.193 4	1.7 7	%I γ =0.7 4 α (K)=0.171 3; α (L)=0.0197 4; α (M)=0.00286 5 α (N)=0.0001318 22 I _(γ+ce) : from the γ -transition intensity balance at 140.7. It appears to the evaluators that I γ =1.7 7 listed in Table I and Fig. 7 of 2016A110 is I γ +ce value, with the assumption of mult=E2 for 140.7 γ .
163.3 2	3.5 4	529.7	(0 ⁻ ,1 ⁻)	366.3 (1 ⁻ ,0 ⁻)	[M1+E2]	0.065 <i>46</i>		Mult.: E2 is consistent with isomer half-life. %I γ =1.72 24 α (K)=0.057 41; α (L)=0.0064 47; α (M)=9.3×10 ⁻⁴ 67 α (N)=4.5×10 ⁻⁵ 31
x340 [†]	22 7 30	366 3	$(1^{-} 0^{-})$	$0.0.(2^{-})$	[M1 F2]	0 0043 17		%Iv=11 3
500.5 2	22.7 50	500.5	(1,0)	0.0 (2)	[5.0015 17		$\alpha(K) = 0.0038 \ 16; \ \alpha(L) = 4.0 \times 10^{-4}$ 17; \alpha(M) = 5.8 \times 10^{-5} \ 24 \alpha(N) = 3.0 \times 10^{-6} \ 12
530.0 5	10.0 <i>10</i>	529.7	(0 ⁻ ,1 ⁻)	0.0 (2 ⁻)	[M1,E2]	0.0014 4		% $I\gamma$ =4.9 <i>13</i> α (K)=0.0013 <i>4</i> ; α (L)=1.33×10 ⁻⁴ <i>34</i> ; α (M)=1.95×10 ⁻⁵ <i>50</i> α (N)=1.03×10 ⁻⁶ 25
2612.9 11	11.5 50	2978.6	(1 ⁺)	366.3 (1 ⁻ ,0 ⁻)				$\%$ I γ =5.7 25

Continued on next page (footnotes at end of table)

$^{82}{\rm Zn}\,\beta^-$ decay 2016Al10 (continued)

 $\gamma(^{82}\text{Ga})$ (continued)

Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
2943.8 <i>4</i>	23.7 <i>49</i>	2978.6	(1^+)	$\begin{array}{c c} 34.5 & (2^{-}) \\ 0.0 & (2^{-}) \end{array}$	%I _Y =12 3
2978.7 <i>6</i>	2.4 <i>19</i>	2978.6	(1^+)		%I _Y =1.2 10

[†] γ ray in coin with 85 γ but could not be assigned to any specific nuclide. [‡] Additional information 1. [#] For absolute intensity per 100 decays, multiply by 0.49 *11*. ^x γ ray not placed in level scheme.

$\frac{^{82}Zn \ \beta^{-} \ decay}{2016Al10}$

Decay Scheme

⁸²₃₁Ga₅₁

4