Adopted Levels, Gammas

	History							
		Ty	pe	Author	Citation	Literature Cutoff Date		
		Full Eva	aluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019		
$Q(\beta^{-})=1248$	4 <i>3</i> ; S(n	a)=3374 <i>4</i> ; S(p))=14010 ($fig(\alpha) = -1.07 \times 10^4 5$	2017Wa10			
				82	Ga Levels			
				Cross Refer	ence (XREF) Flags			
				A ^{82}Zn	β [−] decay			
				B 83 Zn /	β [−] n decay			
E(level) [†]	Jπ‡	T _{1/2}	XREF		Comme	ents		
0.0	(2 ⁻)	0.600 s 2	AB	$\%\beta^{-}=100; \%\beta^{-}n=22$ $\mu=+0.449 \ I2 \ (2017Fa$	2 20 (2016Te09) 09)			
				$Q = -0.200 \ 80 \ (201/F2)$	109) 0 Others: 1086Wa17 108	201 104		
				J^{π} : From Laser spectrum $J^{\pi}=1^{-}.3^{-}$ were not	oscopy work in 2012Ch51 ruled out.	. This assignment is tentative since		
				$T_{1/2}$: Weighted average +83-72 (2010Ho12)	ge of 0.602 s 6 (1986Wa17), 0.592 s 9 (2015Et01), 0	7), 0.599 s 2 (1991Kr15), 0.610 s 0.604 s <i>11</i> (2016Te09). Other: 1976Ru01.		
				T _{1/2} : 2016Te09 value to ⁸² Ga β^- n decay.	from growth curve for (de Uncertainty is from the fi	elayed) neutron activity assigned purely t to the neutron activity curve. (In		
				2016Te09 radioactive ion beam of ⁸² Ga at 30 keV was produced in photofission of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing bout 60 g of 238 Ll wing L/C pallets containing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing L/C pallets containing about 60 g of 238 Ll wing About 60 g of $^{$				
	$T_{1/2}$: 2015Et01 value from fit to ⁸² Ge (first 2 ⁺ to g.s.) 1348-keV gammed 2-s beam on/off cycles. ⁸² Ga nuclides obtained from ²³⁸ U(e,F), E=50 $T_{1/2}$: 2010Ho12 value from measurement of time sequence of decay ty							
correlated with the implanted nuclei (of ⁸² Ga) in Si detectors (2010Ho method of maximum likelihood analysis with input parameters includi efficiency, background, half-lives of daughter and granddaughter nucle								
	an nuclei involved. 2010/1010 used							
μ : Using U(n,X) reaction; deduced from the measured hyperfine paramete								
				2017Fa09 and $2010J(71Ga)=3/2.$	Ch16 , relative to μ (⁷¹ Ga)=	=+2.56227 2 (2005St24) and		
				Q: Using U(n,x) react and 2010Ch16, rela	ion; deduced from the mean tive to $Q(^{71}Ga) = +0.107 I$	asured hyperine parameters 2017Fa09 (2008Py02).		
				Other: μ =+0.459 4, Q corresponding value	=+0.197 13 (2012Ch51) us for J=1 and 3. For J=1.	using U(p,x). 2012Ch51 also give $\mu = +0.364 \ 3, +0.019 \ 4$ and $O = +0.117 \ 9.$		
				-0.549 29 for two s Q=+0.271 17.	sets of hyperfine parameter	rs A and B. For J=3, μ =+0.510 4,		
				$\delta < r^2 > (^{71}Ga, ^{82}Ga) = +0$	0.447 fm ² 23(stat) 120(sys	t) (2012Pr11).		
				Isotope shift $\delta v(^{71}\text{Ga},^{8}\text{to }^{71}\text{Ga})$	³² Ga)=-222 MHz 9(stat)	19(syst) (2012Pr11) measured relative		
34.5 1	(2 ⁻)	<10 ns	A	J^{π} : $J^{\pi}=(2^{-},3^{-})$ in 2010 multipolarity for the E1 transition.	5A110. $J^{\pi}=3^{-}$ is not likely 2943.8-keV γ ray from t	a, as it would imply a possible M2 he 2973.6-keV level competing with an		
140 7 2	(A^{-})	80 m- 0	AD	$T_{1/2}$: Estimated in 20	16A110.	$0(12V_{0}26)$ from $u(t)$ in $D_{-}/238U(E_{1})$		
140./ 3	(4)	89 NS 9	АВ	$^{1}_{1/2}$: From 2016A110 <500 ns (2009Fo05 events in 9 Be(238 U,) from time correlations b X).	etween implanted ⁸² Ga nuclei and γ -ray		
				J^{π} : possible E2 γ to (2)	2^{-}) g.s.; no β feeding from	n^{82} Zn 0 ⁺ parent.		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸²Ga Levels (continued)

$J^{\pi \ddagger}$	XREF
(1-,0-)	A
$(0^{-},1^{-})$	Α
(1^{+})	Α
	$ \frac{J^{\pi \ddagger}}{(1^{-},0^{-})} \\ (0^{-},1^{-}) \\ (1^{+}) $

[†] From ⁸²Zn β^- decay (2016A110). [‡] J^{π} assignments from 2016A110, based on allowed or forbidden nature of β - transitions in ⁸²Zn β^- decay. Other: 2007Na28.

γ ⁽⁸² Ga)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	Comments				
34.5	(2^{-})	34.5 1	100	0.0 (2 ⁻)	[M1]	1.394 23	B(M1)(W.u.)>0.022				
140.7	(4 ⁻)	140.7 <i>3</i>	100	$0.0(2^{-})$	[E2]	0.193 4	B(E2)(W.u.)=4.6 5				
366.3	$(1^{-},0^{-})$	366.3 2	100	$0.0 (2^{-})$	[M1,E2]	0.0043 17					
529.7	$(0^{-}, 1^{-})$	163.3 2	35	366.3 (1 ⁻ ,0 ⁻)	[M1+E2]	0.065 46					
		530.0 5	100 10	$0.0 (2^{-})$	[M1,E2]	0.0014 4					
2978.6	(1^{+})	2612.9 11	48 21	366.3 (1 ⁻ ,0 ⁻)							
		2943.8 <i>4</i>	100 21	34.5 (2 ⁻)							
		2978.7 6	10 8	0.0 (2 ⁻)							

[†] From ⁸²Zn β^- decay (2016Al10).

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: % photon branching from each level

⁸²₃₁Ga₅₁