82 Ge β^- decay 2015Et01,2014Mi16

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019

Parent: ⁸²Ge: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=4.0$ s 7; $Q(\beta^-)=4688$ 5; $\%\beta^-$ decay=100.0

⁸²Ge-T_{1/2}: From Adopted Levels.

⁸²Ge-Q(β^{-}): From 2017Wa10.

Based on 2015Et01 and 2014Mi16 compilations in XUNDL.

2015Et01 compiled by A.A. Sonzogni (BNL), June 29, 2015; edited by B. Singh (McMaster), July 1, 2015.

2014Mi16: Compiled by B. Singh (McMaster), Sept 18, 2014.

2015Et01: ⁸²Ge nuclides obtained from ²³⁸U(e,F), E=50 MeV, separated by the PARRNe mass separator at the ALTO facility. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , β feedings, log *ft* Gammas detected with two EXOGAM prototype detectors, two EUROGAM-1 type detectors and one large coaxial Ge detector. Plastic detectors were used for betas.

2014Ma16: ⁸²Ge source obtained from delayed neutron decay of ⁸³Ga, which was produced in the fission of uranium (UC_x target) by 50-MeV proton beam from HRIBF-ORNL facility. ⁸³Ga ions were extracted from the resonant ionization laser ion source (RILIS setup), followed by mass separation. Isotopically pure ⁸³Ga beam was sent to Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS). ⁸³Ga decays 62.8% by delayed neutron emission to ⁸²Ge. Measured E γ , I γ , $\gamma\gamma$ -, $\beta\gamma$ -, and n γ -coin using two HPGe Clover detectors for γ rays, two plastic scintillators for β particles, an array of 48 ³He ionization chambers for neutron detection. Deduced levels, J, π , β feedings, log *ft* values. Comparison with shell-model calculations.

Although 2015Et01, 2014Mi16 have extended the decay scheme it continues to be incomplete; 2015Et01 suspect presence of some high-lying 1^+ states decaying directly to the g.s.. See also comment on I β .

Others:

1981Ho24,1980HoZN: Mass-separated fission product; measured γ , $\gamma\gamma$, ce;Ge(Li), Si(Li). Authors observed only E(levels)=843.19

4 (E γ =843.24 5), 952.16 10 (tentative level not confirmed, 951.9 γ placed elsewhere), 1091.97 4 (E γ =248.84 5, 1091.90 3). 1973KrZN, 1981ZeZY fast chemical separations.

⁸²As Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments		
0.0	(2^{-})	19.1 s 5	J ^π : From 2014Mi16, 2004Ga44.		
131.6 5	(5-)	13.6 s 4	E(level): 132.1 3 obtained in 2014Mi16 is in agreement with 128 keV 6 from mass measurement (2008Ha23).		
224.2 6	(4 ⁻)				
516.63 16	(0-,1-,2-)		E(level): note that the ordering of the 575.5-516.5 γ cascade is reversed in 2014Mi16, thus defining a level here at 516.6 keV instead of a level at 576 keV as in 2014Mi16.		
553.46 24	$(3^{-}, 4^{-})$				
671.6 6	(2 ⁻)				
843.15 17	$(1^+)^{@}$		J^{π} : (0,1) ⁻ given by 2015Et01.		
980.14 24	(2^+)				
1092.05 15	1+				
1369.5 4	$(0^{-},1)$		J^{π} : from log <i>ft</i> =6.67 <i>12</i> from 0 ⁺ parent; no assignment in 2015Et01.		
2044.12 20	$(1^+)^{@}$		J^{π} : (0 ⁻ ,1) given by 2015Et01.		
2291.4 4	$(1^+)^{@}$		J^{π} : (0 ⁻ ,1) given by 2015Et01.		
2420.8 6			J^{π} : (0 ⁻ ,1) from log <i>ft</i> =6.13 <i>11</i> from 0 ⁺ parent in conflict with decay to (4 ⁻); no assignment in 2015Et01.		
2443.0 4	$(1^+)^{@}$		J^{π} : (0 ⁻ ,1) given by 2015Et01.		

[†] From least-squares fit to $E\gamma$.

[‡] Adopted values. J^{π} from 2015Et01 for E > 131.6, except where noted.

[#] From ⁸²As Adopted Levels.

^(a) From log ft values, assuming allowed if less than 5.9. The values given by 2015Et01 are given as comments. The authors state that their logft values are lower limits.

⁸²Ge β^- decay 2015Et01,2014Mi16 (continued)

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡#}	Log ft	Comments
(2245 5)	2443.0	0.31 7	5.66 13	av E β =920.5 24
				$I\beta^{-1}$: 0.31 8 given by 2015Et01.
(2267 5)	2420.8	0.093 18	6.20 12	av E β =930.9 24
				$I\beta^{-}$: 0.10 3 given by 2015Et01.
(2397 5)	2291.4	0.65 18	5.45 15	av E β =991.6 24
				$I\beta^{-}$: 0.6 2 given by 2015Et01.
(2644 5)	2044.12	1.7 4	5.22 13	av E β =1108.2 24
				$I\beta^{-}$: 1.7 4 given by 2015Et01.
(3319 5)	1369.5	0.17 4	6.64 13	av E β =1429.3 24
				$I\beta^{-}$: 0.17 4 given by 2015Et01.
(3596 5)	1092.05	80 8	4.12 9	av E β =1562.3 24
				$I\beta^{-}$: 80 20 given by 2015Et01.
(3708 [@] 5)	980.14			I β^- : 0.05 11 from intensity balance. 2015Et01 give ≤0.1.
(3845 5)	843.15	2.7 5	5.72 11	av E β =1681.9 24
				$I\beta^{-}$: 2.7 7 given by 2015Et01.
(4016 5)	671.6	0.18 11	8.6 ¹ <i>u</i> 3	av $E\beta = 1767.0\ 24$
				$I\beta^{-1}$: 0.17 7 given by 2015Et01.
$(4171^{\textcircled{0}}5)$	516.63	0.12 11	7.2 4	av E β =1839.3 25
				$I\beta^{-1}$: 0.11 3 given by 2015Et01.

[†] From gamma transition intensity balance at each level. The values reported by 2015Et01 are given as a comment and are obtained assuming β feeding of 80% 20 for the 1092-keV level.

[±] 2014Mi16 conclude that 14.6% β intensity is unaccounted. from intensity balance, evaluators find unaccounted β feeding of 14 7. Allowing for <0.7% β feeding to ground state, other 13% 7 must be associated with unobserved excited states in ⁸²As.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{82}{\rm As})$

I γ normalization: From absolute intensity (photons per 100 decays of the parent) of 1092 γ from the decay of ⁸²Ge, which was obtained by determining number of ⁸³Ga from measured absolute intensity of 1348 γ from its decay (2004Ga44). This value compares well with absolute intensity of 80% 20 determined by 2004Ga44.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	α [@]	Comments
92.6 4	1.0 5	224.2	(4 ⁻)	131.6	(5 ⁻)	[M1]	0.1110 21	α (K)=0.0985 <i>19</i> ; α (L)=0.01071 <i>20</i> ; α (M)=0.00164 <i>3</i> ; α (N)=0.0001233 <i>23</i>
240.1.5	264	1002.05	1+	042.15	(1+)			92.6 γ decay curve yields T _{1/2} (⁸² Ge)=3.9 s 6.
249.1 5	3.6 4	1092.05	1.	843.15	(1^{+})			
329.3 <i>3</i>	0.5 1	553.46	(3 ⁻ ,4 ⁻)	224.2	(4 ⁻)			329.3 γ decay curve yields T _{1/2} (⁸² Ge)=4.1 s 11.
420.4 5	0.27 9	1092.05	1+	671.6	(2 ⁻)			420.4 γ decay curve yields T _{1/2} (⁸² Ge)=3.1 s 8.
426.6 2	0.87 9	980.14	(2 ⁺)	553.46	(3 ⁻ ,4 ⁻)			426.6γ decay curve yields $T_{1/2}(^{82}Ge)=4.8$ s 11.
447.4 3	0.5 1	671.6	(2 ⁻)	224.2	(4 ⁻)			447.4γ decay curve yields $T_{1/2}(^{82}Ge)=4.9$ s 13.
516.5 [‡] 2	1.25 9	516.63	(0^-,1^-,2^-)	0.0	(2 ⁻)			516.5 γ decay curve yields T _{1/2} (⁸² Ge)=4.5 s 16.
526.3 <i>3</i>	0.22 4	1369.5	$(0^{-},1)$	843.15	(1^{+})			
553.1 4	0.20 4	553.46	(3 ⁻ ,4 ⁻)	0.0	(2 ⁻)			

$^{82}\mathrm{Ge}\,\beta^{-}\,\mathrm{decay}$ 2015Et01,2014Mi16 (continued)

$\gamma(^{82}As)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
575.3 [‡] 2	1.1 1	1092.05	1+	516.63	(0-,1-,2-)	575.3 γ decay curve yields T _{1/2} (⁸² Ge)=4.0 s 11.
843.4 2	8.0 3	843.15	(1^{+})	0.0	(2 ⁻)	843.4γ decay curve yields $T_{1/2}(^{82}Ge)=3.5$ s 7.
951.8 <i>3</i>	1.4 4	2044.12	(1^{+})	1092.05	1+	951.8 γ decay curve yields T _{1/2} (⁸² Ge)=3.9 s 12.
1063.9 <i>3</i>	0.16 4	2044.12	(1^{+})	980.14	(2^{+})	
1092.0 2	100 6	1092.05	1^{+}	0.0	(2 ⁻)	1092.0 γ decay curve yields T _{1/2} (⁸² Ge)=5.0 s 7.
1199.1 6	0.5 2	2291.4	(1^{+})	1092.05	1+	1199.1 γ decay curve yields $T_{1/2}(^{82}Ge)=3.4 \text{ s } 13$.
1201.1 2	0.6 2	2044.12	(1^{+})	843.15	(1^{+})	1201.1 γ decay curve yields $T_{1/2}(^{82}Ge)=3.9 \text{ s } 23$.
1311.3 <i>3</i>	0.34 7	2291.4	(1^{+})	980.14	(2^{+})	1311.3 γ decay curve yields T _{1/2} (⁸² Ge)=4.6 s 23.
1462.4 5	0.31 7	2443.0	(1^{+})	980.14	(2^{+})	
1600.1 4	0.09 2	2443.0	(1^{+})	843.15	(1^{+})	
2196.6 2	0.12 2	2420.8		224.2	(4 ⁻)	

[†] From 2015Et01. [‡] Note that the ordering of the 575-515 γ cascade is reversed in 2014Mi16, thus defining a level here at 515 keV instead of 575 keV as in 2014Mi16. [#] For absolute intensity per 100 decays, multiply by 0.774 63.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

82 Ge β^- decay 2015Et01,2014Mi16

