	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

 $Q(\beta^{-}) = -8201 \ 90$; $S(n) = 12636 \ 8$; $S(p) = 2690 \ 6$; $Q(\alpha) = -3307 \ 6$ 2021Wa16 S(2n)=24050 80, S(2p)=9488 6 (2021Wa16).

Q(β-) from measured mass excess of -65720.7 keV 28 ⁸¹Y (2023Xi01) [Other: -65713 keV 5 (2021Wa16)] and mass excess of -57520 keV 90 of ⁸¹Zr (2021Wa16). Other: Q(β -)=-8190 90 (2021Wa16).

The uncertainty of the weighted average is the lowest uncertainty of the experimental data.

⁸¹Y Levels

Cross Reference (XREF) Flags

A В С

E(level) [†]	J ^π @	T _{1/2} ^b	XREF	Comments
00	(5/2 ⁺) ^{&}	70.4 s 11	ABC	$%ε+%β^+=100$ T _{1/2} : weighted average of 72.0 s 15 (1981Li12), 74 s 3 (1982De36) and 69.0 s 11 (1993Mi11), from γ(t), and 70 s 5 (1982De36) from β(t). No evidence for the 5-min activity reported by 1970HaYC (1981Li12). Additional information 1.
113.30 ⁿ 4	(3/2 ⁻) ^{<i>a</i>}	$\leq 7^d$ ns	ABC	J^{π} : D 113 γ to (5/2 ⁺) g.s.; analogy with neighboring isotones and isotopes.
149.632 ^p 20	$(7/2^+)$	$\leq 7^d$ ns	BC	J^{π} : 149.63 γ D, $\Delta J=1$, to (5/2 ⁺).
268.62 ⁰ 7	$(9/2^+)$	$\leq 7^d$ ns	BC	J^{π} : stretched E2 γ to (5/2 ⁺); γ to (7/2 ⁺).
288.66 ^m 5	$(5/2^{-})$	$\leq 7^{d}$ ns	ABC	
343.48 ¹ 19	$(1/2^{-})$		AC	
537.14 ⁿ 10	$(7/2^{-})$	$\leq 7^{d}$ ns	BC	
607.66 ¹ 22	$(5/2^{-})$		BC	
663.6 ^k 3	$(5/2^{-})$		С	J ^π : Jpi:
683.43 ^p 12	$(11/2^+)$	$\leq 7^d$ ns	BC	J^{π} : E2 γ to (7/2 ⁺); band assignment.
825.58 ^m 13	(9/2-)	$\leq 7^{d}$ ns	BC	
839.12 ⁰ 15	(13/2 ⁺)	3.0 ps 4	BC	J^{π} : E2 γ to (9/2 ⁺); γ to (11/2 ⁺). T _{1/2} : from recoil distance Doppler shift (1994Jo12) in (²⁸ Si, α p γ). Q(transition)=3.59 +28-23 (2002Ka61) from (³² S, 2α p γ).
1107.4 ¹ 3	(9/2 ⁻)		BC	
1167.21 ⁿ 18	$(11/2^{-})$	$\leq 7^{d}$ ns	BC	
1250.1 ^k 5	(9/2 ⁻)		С	
1482.64 ^{<i>p</i>} 20	(15/2+)	<7 ^d ns	BC	Q(transition)<2.5 (2002Ka61) from (³² S,2 α p γ). T _{1/2} : Other: ≥ 0.7 ps (³² S,2 α p γ).
1530.14 ^m 23	$(13/2^{-})$	$\leq 7^d$ ns	BC	
1550.2 ^h 8	$(13/2^+)$		С	
1653.29 ⁰ 18	(17/2 ⁺)	0.66 ps +21-14	BC	Q(transition)=2.9 5 (2002Ka61) from (32 S,2 α p γ). J ^{π} : E2 γ to (13/2 ⁺); γ to (15/2 ⁺). T _{1/2} : from DSA in (28 Si, α p γ). Other: 0.68 ps +32–17 from DSA in (32 S,2 α p γ).
1751.6 [#] 8	(17/2 ⁺)		С	

⁸¹Y Levels (continued)

E(level) [†]	J ^π @	T _{1/2} b	XREF	Comments
1782.6 ¹ 4	$(13/2^{-})$		BC	
1951.93 ⁿ 23	$(15/2^{-})$	$\leq 7^{d}$ ns	BC	
1993.3 ^k 6	$(13/2^{-})$	_	С	
2373.7 ^m 3	$(17/2^{-})$	0.53 ps +43-19	BC	Q(transition)=2.6 7 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
2415.7 ^h 7	$(17/2^+)$	1	BC	
2513.3 ^p 7	$(19/2^+)$	0.28 ps +12-8	С	Q(transition)=2.2 4 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
2594.5 ¹ 6	$(17/2^{-})$	>0.69 ps	BC	Q(transition) < 2.7 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
2686.7 ⁰ 3	(21/2 ⁺)	0.28 ps +5-4	BC	$T_{1/2}$: weighted average of 0.26 ps +5-4 from (${}^{32}S,2\alpha p\gamma$) and 0.34 ps +10-7 from DSA in (${}^{28}Si,\alpha p\gamma$).
2860 6 ⁿ 4	$(19/2^{-})$	$0.44 \text{ ps} \pm 42 - 18$	BC	$Q(\text{transition})=2.32 + 25 - 27 (2002 \text{Kab1}) \text{ from } (^{32}\text{S} 2 \alpha \text{m})$
2866.5^{k} 7	$(17/2^{-})$	0.44 p3 142 10	C C	Q(tansition) = 2.2 + 7 + 0 (2002 Ra01) from (-0,24 py).
2000.5 7	(17/2) $(21/2^+)$		C	
2917.4 9 3342 6 ^m 5	$(21/2^{-})$	$0.26 \text{ ps} \pm 12 - 8$	BC	$\Omega(\text{transition}) = 2.6 \pm 5 - 4.(2002 \text{ ka61}) \text{ from } (32.8.2 \text{ and})$
3360.9^{j} 7	$(21/2^{-})$ $(19/2^{-})$	0.20 p3 112 0	C	$\mathcal{L}(runshon) = 2.0 + 3 + 7 (20021 ruor) none (-0, 2upy).$
3413.1^{h} 9	(1)/2) $(21/2^+)$		c	
$3550 6^{l} 7$	$(21/2^{-})$	$0.20 \text{ ps} \pm 21 \pm 12$	BC	$O(\text{transition}) = 3.2 \pm 18 \pm 10$ (2002Ka61) from (³² S 2 and)
$3730 1^{k} 8$	$(21/2^{-})$	0.20 ps +21-12	DC C	Q(tansition) = 5.2 + 10 - 10 (2002 Ka01) noin (-5,2upy).
3745.9 ^P 9	(21/2) $(23/2^+)$	0.16 ps + 9 - 7	c	
3894.6 ⁿ 6	$(23/2^{-})$	0.44 ps + 15 - 11	BC	$O(\text{transition}) = 1.81 + 28 - 24 (2002 \text{Ka61}) \text{ from } (^{32}\text{S}.2\alpha\text{py}).$
3914.0 ⁰ 4	(25/2+)	0.15 ps 4	BC	Q(transition)=2.06 +36-23 (2002Ka61) from (32 S,2 α p γ). T _{1/2} : determined from spectra gated from above the 1227 γ . Other T _{1/2} : 0.15 ps 6 from DSA in (28 Si, α p γ).
3992.1 [#] 10	$(25/2^+)$		С	
4183.2 ^j 8	(23/2 ⁻)	0.7 ps +62-5	С	Q(transition)= $0.7 + 6-5$ from 1323 γ , 2.4 +24-17 from 822 γ (2002Ka61) from (³² S.2 α p γ).
4440.1 ^{<i>m</i>} 6	(25/2 ⁻)	0.17 ps +12-8	BC	T _{1/2} : determined from spectra gated from above the 1098 γ . Q(transition)=2.5 +9-6 (2002Ka61) from (³² S,2 α p γ).
4552.1 ^h 11	$(25/2^+)$		С	
4701.4 ^k 13	$(25/2^{-})$		С	
4716.5 ¹ 14	$(25/2^{-})$	0.82 ^c ps +66-22	С	Q(transition)>1.0 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
5032.1 ^{<i>f</i>} 15	$(27/2^+)$		С	
5090.0 ⁿ 7	$(27/2^{-})$	0.10 ps +10-8	BC	Q(transition)=2.6 +24-8 (2002Ka61) from $({}^{32}S,2\alpha p\gamma)$.
5138.0 ^p 15	$(27/2^+)$	0.25^{c} ps +10-8	С	Q(transition)>1.2 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
5213.1 ^J 11	$(27/2^{-})$	0.30 ps 12	С	Q(transition)=2.7 +8-4 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
5270.9° 6	(29/2+)	0.062 ps 28	BC	$T_{1/2}$: ≈ 0.20 ps, without correction for feeding (1994Jo12), in (²⁸ Si, $\alpha p\gamma$). Q(transition)=2.5 +8-4 (2002Ka61) from (³² S, $2\alpha p\gamma$).
5499.8 [#] 13	$(29/2^+)$		С	22
5664.3 ^m 10	$(29/2^{-})$	0.12 ps +6-5	BC	Q(transition)= $2.3 + 7 - 4$ (2002Ka61) from (32 S, $2\alpha p\gamma$).
5744.5 ¹ 12	$(29/2^{-})$	0.18 ps +12-10	С	Q(transition)=1.6 +8-4 (2002Ka61) from $({}^{32}S,2\alpha p\gamma)$.
5753.5 ^k 17	$(29/2^{-})$		С	
5836.5 ⁿ 12	$(29/2^+)$		С	
6046.1 ¹ , 19	$(29/2^{-})$		С	
6386.7 ^J 12	(31/2 ⁻)	0.37 ^c ps +22-14	С	Q(transition)>0.8 from 1297 γ , >1.26 from 1174 γ (2002Ka61) from (³² S,2 α p γ).
6469.9 ⁿ 16	$(31/2^{-})$	0.35 ^c ps +17-12	С	Q(transition)>1.0 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
6509.1 ^{<i>f</i>} 17	$(31/2^+)$		С	

Continued on next page (footnotes at end of table)

⁸¹Y Levels (continued)

E(level) [†]	Jπ @	$T_{1/2}^{b}$	XREF	Comments
6629.3 ⁰ 12	$(33/2^+)$	0.083 ps 21	BC	$O(\text{transition}) = 2.09 + 32 - 22 (2002 \text{Ka61}) \text{ from } (^{32}\text{S}.2\alpha p \gamma).$
6672.7 ^P 22	$(31/2^+)$	F	С	$\mathbf{C}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2}, \mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{2},$
6893.3 ^k 20	$(33/2^{-})$		С	
6911.6 ^m 13	(33/2 ⁻)	0.14 ps +14-11	C	Q(transition)=1.3 +16-4 from 1167 γ , 1.7 +21-5 from 1247 γ (2002Ka61) from (³² S,2 α p γ).
6951.1 [#] 16	$(33/2^+)$		С	
7090.3 ⁱ 14	(33/2 ⁻)	0.05 ps +5-4	С	Q(transition)=1.1 +10-4 from 1347 γ , 2.2 +19-7 from 1425 γ (2002Ka61) from (³² S,2 α p γ).
7315.3 ^h 15	$(33/2^+)$		С	
7511.7 ¹ 25	$(33/2^{-})$		С	
7710.8 ^j 18	$(35/2^{-})$		С	
7864.4 21	$(35/2^{-})$		С	
7892.3 21	$(35/2^{-})$		С	
7928.6 22	$(35/2^{-})$		C	
7947.7 ^J 22	$(35/2^+)$		С	
8079.7 ⁰ 19	$(37/2^+)$	0.08 ps +5-4	BC	XREF: B(8089.5).
2006 0 22	(25/2-)		6	Q(transition)=1.9 +9-4 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
8096.9 23 8160 P 3	(35/2)		C	
8100^{μ} 3 8276 0 ^m 10	(35/2)	0.10 ps + 15.8	C	$O(\text{transition}) = 1.0 + 22.7 (2002K_{2}61) \text{ from } (32S.2 \text{ cm})$
8270.0 19 8504.9 17	(37/2)	0.10 ps + 15 - 8	C	$Q(\text{transmon}) = 1.9 + 22 - 7 (2002\text{Ka01}) \text{ from } (-3, 2\alpha\text{py}).$
8504.8" 17	$(37/2^{-1})$	0.000 7	C	O(-1) + 1 + (0000 V (1)) = (320.0 - 1)
8519.8° 20	(31/2)	0.22° ps /	C	$Q(\text{transition}) > 1.1 (2002\text{Kao1}) \text{ from } (^{32}\text{S}, 2\alpha p \gamma).$
8383.98 20	(37/2)		C	
8917.8 ⁿ 22	$(37/2^{+})$		C	
9167.7 23	(39/2 ⁻)		С	
9323 3	$(39/2^+)$		С	22-
9594.3 ⁰ 25	$(41/2^{+})$	0.028 ps +55-21	C	Q(transition)=2.7 +27-12 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
$9807.9^{m} 24$	$(41/2^{-})$	0.021 ps +55-14	С	Q(transition)=3.0 +22-15 (2002Ka61) from ($^{32}S, 2\alpha p\gamma$).
9818 [#] 3	$(39/2^+)$		C	
9981 [#] 3	$(41/2^+)$		C	
100638 3	$(41/2^{-})$		С	
10193 3	$(41/2^{-})$		С	
10777 ^J 3	$(43/2^{-})$		С	
10884 ^J 3	$(43/2^+)$		С	
11234 ⁰ 3	$(45/2^+)$	0.05 ps +10-4	С	Q(transition)=1.7 +28-7 (2002Ka61) from $({}^{32}S, 2\alpha p\gamma)$.
11520 ^m 3	$(45/2^{-})$	0.11° ps +10-6	С	Q(transition)>1.0 (2002Ka61) from (32 S,2 α p γ).
11545 [#] 4	$(45/2^+)$		С	
11617 <mark>8</mark> 3	$(45/2^{-})$		С	
12014 ¹ 4	$(45/2^{-})$		С	
12570 ^j 4	$(47/2^{-})$		С	
12579 <i>^f 4</i>	$(47/2^+)$		С	
13088 ⁰ 4	$(49/2^+)$	0.12 ^c ps +22-8	С	Q(transition)>0.8 (2002Ka61) from $(^{32}S, 2\alpha p\gamma)$.
13282 [#] 4	$(49/2^+)$		С	
13423 ^m 4	$(49/2^{-})$		С	
14099 ⁱ 4	$(49/2^{-})$		С	
14483 <i>^f</i> 4	$(51/2^+)$		С	
14806? ^j 4	$(51/2^{-})$		С	
	/			

Continued on next page (footnotes at end of table)

⁸¹Y Levels (continued)

E(level) [†]	J ^π @	XREF	Comments	
15248 ⁰ 5	$(53/2^+)$	С		
15523? ^m 4	$(53/2^{-})$	С		
15572? 4	$(53/2^{-})$	С		
16440? ⁱ 5	$(53/2^{-})$	С		
16785? ^f 5	$(55/2^+)$	С		
17670? ⁰ 5	$(57/2^+)$	С		
0+x [‡]		С	Additional information 2.	
1225.0+x ^e 12		С		
2659.6+x ^e 19		С		
4261.5+x ^e 25		С		
6034+x ^e 3		С		
8004+x ^e 4		С		

[†] From a least-squares fit to $E\gamma$, except as noted.

[‡] x>5.3 MeV.

[#] Member of a π =(+) sequence of states which feed members of 5/2[422], α =+1/2 band. No extended band structure(s) connected with transitions from these levels could be established (1997Sc17).

^(a) Based on $\gamma(\theta)$ and/or DCO ratio data from ⁵⁸Ni(²⁸Si, $\alpha p\gamma$), and on intensities and deduced band structure from ⁵⁸Ni(²⁸Si, $\alpha p\gamma$) and ⁵⁸Ni(³²S, $2\alpha p\gamma$), except as noted.

- & Based on the stronger $\varepsilon + \beta^+$ feeding to $3/2^+$; $5/2^+$; and $7/2^+$ states and weaker feeding to $1/2^+$ and $3/2^-$ states, authors of 1985Li12 assign $5/2^+$ to the ⁸¹Y parent g.s., presuming observed population of $1/2^+$ and $3/2^-$ levels to be indirect, and ascribing the weaker feeding of 221-keV ($3/2^+$) and 336-keV ($5/2^+$) levels to inhibition arising from the $\Delta K=2$ selection rule. By contrast, 1982De36 argue that, from level systematics for Z=39 and even N, the g.s. and first excited state spins should be $1/2^-$ and $9/2^+$. Since the latter would be excluded by log $ft=5.05 \ 3$ to ($1/2^-$) (based on their very different decay normalization), they favor a $J^{\pi}=1/2^-$ parent; $9/2^+$ is also unlikely since no ε branch is observed to the ($9/2^+$) 132 level. However, $1/2^-$ would be tenable only if ⁸¹Sr J^{π} assignments from (HI,xn γ) were incorrect. The evaluator adopts ($5/2^+$) from 1985Li12, consistent with energy systematics for $5/2^+$ states in ⁸⁵Y and ⁸⁷Y. Probable 5/2[422] bandhead (1988Mo17).
- ^{*a*} D γ to (5/2⁺); π =- consistent with very small signature splitting (1985Li12); K^{π} =3/2⁻ favored by analogy with ⁷⁵Kr (N=39) and ⁸³Y (Z=39). However, K=5/2 has been suggested, based on level energy systematics within the band as a function of K (1985Li12).
- ^b From DSAM in ⁵⁸Ni(32 S,2 α p γ), corrected for side-feeding, except as noted.
- ^c Effective half-life from DSAM in 58 Ni(32 S,2 α p γ); uncorrected for side-feeding.
- ^d $T_{1/2} \leq 7$ ns from $\gamma \gamma(t)$ and particle- $\gamma(t)$ data in (²⁸Si, $\alpha p\gamma$).
- ^{*e*} Band(A): π =(+) band (1997Sc17). This band populates the 25/2⁺ and 29/2⁺ members of g.s. band. From $\gamma\gamma$ coin and intensity balances, 1997Sc17 deduce that bandhead for this band lies above the 5266-keV 29/2⁺ member of the g.s. band, but could not identify any transitions which connect it to that band.
- ^{*f*} Band(B): $\pi = +, \alpha = -1/2$ band (1997Sc17).
- ^g Band(C): Possible $\pi = -$, $\alpha = +1/2$ band fragment (1997Sc17).
- ^{*h*} Band(D): π =+, α =+1/2 band (1997Sc17).
- ^{*i*} Band(E): $\pi = -$, $\alpha = +1/2$ band (1997Sc17).
- ^{*j*} Band(F): $\pi = -$, $\alpha = -1/2$ band (1997Sc17).
- ^{*k*} Band(G): π 5/2[303], α =+1/2 band (1997Sc17).
- ^{*l*} Band(H): π 1/2[301], α =+1/2 band (1997Sc17). Band parameters are too highly dependent on levels included in fit to be meaningful.
- ^{*m*} Band(I): $K^{\pi}=3/2^{-}$, $\alpha=+1/2$ band (1997Sc17). 1997Sc17 propose a π 3/2[301] configuration, analogous to ⁷⁵Kr (N=39) and ⁸³Y (Z=39); however, 1994Jo12 propose a π 3/2[312] configuration. The band crossing at $\hbar\omega=0.67$ MeV is attributed to alignment of $g_{9/2}$ neutrons (1993Mi11, 1994Jo12).
- ^{*n*} Band(i): $K^{\pi}=3/2^{-}$, $\alpha=-1/2$ band (1997Sc17). See comment on signature partner band.

⁸¹Y Levels (continued)

^{*o*} Band(J): π 5/2[422] g.s., α =+1/2 band (1997Sc17). Probable band assignment. ^{*p*} Band(j): π 5/2[422] g.s., α =-1/2 band (1997Sc17). Probable band assignment.

$\gamma(^{81}{\rm Y})$

Additional information 3.

6

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_f^{π}	Mult. ^C	α^{e}	Comments
113.30	(3/2 ⁻)	113.31 [‡] 4	100	0	(5/2+)	(E1)	0.0745 10	α (K)=0.0658 9; α (L)=0.00733 10; α (M)=0.001243 17 α (N)=0.0001641 23; α (O)=1.048×10 ⁻⁵ 15
		+						E_{γ} : 113.5 <i>I</i> (1994Jo12) and 113.29 <i>3</i> (1985Li12) both in (²⁸ Si,αpγ), and 113.4 <i>I</i> in (³² S,2αpγ).
149.632	$(7/2^+)$	149.63 2	100	0	$(5/2^+)$	(M1)	0.0605 8	$\alpha(K)=0.0532\ 7;\ \alpha(L)=0.00608\ 9;\ \alpha(M)=0.001040\ 15$ $\alpha(N)=0.0001395\ 20;\ \alpha(O)=9.55\times10^{-6}\ 13$
								E_{γ} : 149.7 <i>1</i> (1994Jo12), 149.62 <i>2</i> (1985Li12) both in (²⁸ Si,αpγ), and 149.7 <i>1</i> in (³² S,2αpγ).
268.62	$(9/2^+)$	119.06 [#] 10	100.0 ^b 15	149.632	$(7/2^+)$	(M1+E2)	0.34 23	$\alpha(K)=0.29 \ 19; \ \alpha(L)=0.042 \ 31; \ \alpha(M)=0.007 \ 5$
								E_{γ} : 119.1 <i>I</i> (1994Jo12), 118.87 <i>2</i> (1985Li12) both in (²⁸ Si, α p γ), and 119.2 <i>I</i> in (³² S, 2α p γ).
		268.60 [‡] 10	63 13	0	$(5/2^+)$	E2 ^d	0.0300 4	$\alpha(K) = 0.0261 4; \ \alpha(L) = 0.00323 5; \ \alpha(M) = 0.000552 8$
								$\alpha(N) = 7.21 \times 10^{-5} I0; \ \alpha(O) = 4.30 \times 10^{-5} 6$ E _y : 268.7 1 (1994Jo12), 268.47 13 (1985Li12) both in (²⁸ Si, α py), and
								268.4 <i>3</i> in $({}^{32}S, 2\alpha p\gamma)$.
								I _{γ} : unweighted average of 76.0 <i>15</i> (1994Jo12), 49.3 <i>15</i> (1985Li12) in 58 Ni(28 Si, α p γ). Reason for the discrepancy is unknown.
								Mult.: Q from DCO ratio; not M2 from RUL.
288.66	$(5/2^{-})$	175.38 [‡] 3	100 3	113.30	$(3/2^{-})$	(M1)	0.0396 6	$\alpha(K)=0.03495; \alpha(L)=0.003976; \alpha(M)=0.00067910$
								$\alpha(N) = 9.11 \times 10^{-5} I_3; \alpha(O) = 6.26 \times 10^{-6} 9$ E : 175.3 <i>J</i> (1004 Jo12) 175.30 3 (1085 J i12) both in (²⁸ Si arm) and
								L_{γ} . 175.3 <i>7</i> (1994)012), 175.3 <i>9</i> (1995)2112) both in ($^{-}$ Si, apy), and 175.3 <i>2</i> in (32 S.2 <i>apy</i>).
		288.8 [‡] 4	46.3 20	0	$(5/2^+)$			E_{γ} : 289.2 3 in (²⁸ Si, α p γ), 288.4 3 in (³² S, 2α p γ).
343.48	$(1/2^{-})$	230.1 2	100	113.30	$(3/2^{-})$,
537.14	$(7/2^{-})$	248.72 [‡] 11	100 5	288.66	$(5/2^{-})$	(M1)	0.01601 22	$\alpha(K)=0.01411\ 20;\ \alpha(L)=0.001587\ 22;\ \alpha(M)=0.000272\ 4$
								$\alpha(N)=3.65\times10^{-5}$ 5; $\alpha(O)=2.523\times10^{-6}$ 35
								E_{γ} : 248.0 2 (1994)012), 248.79 7 (1985)112) both in (-*31, α py), and 248.3 2 in (32 S.2 α py).
		387.1 [#] 6	25.4 12	149.632	$(7/2^+)$			E_{γ} : 387.7 2 in (²⁸ Si, α p γ), 386.5 4 in (³² S, 2α p γ).
		423.31 [‡] 22	44 5	113.30	(3/2 ⁻)			E _γ : 422.8 4 (1994Jo12), 423.50 22 (1985Li12) both in (²⁸ Si, <i>α</i> pγ), and 423.2 4 in (³² S,2 <i>α</i> pγ).
		536.5 5		0	$(5/2^+)$			
607.66	$(5/2^{-})$	264.0 <i>3</i>		343.48	$(1/2^{-})$			

 $^{81}_{39}\mathrm{Y}_{42}$ -6

$\gamma(^{81}Y)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	\mathbf{E}_{f}	J_f^π	Mult. ^C	α^{e}	Comments
607.66	$(5/2^{-})$	319.4 [‡] 4	100 8	288.66	$(5/2^{-})$			E_{γ} : 319.7 3 in (²⁸ Si, α p γ), 319.0 3 in (³² S.2 α p γ).
	(-1)	494.3 [‡] 5	94 8	113.30	$(3/2^{-})$			E_{v} : 494.8 5 in (²⁸ Si, $\alpha p\gamma$), 493.8 5 in (³² S, $2\alpha p\gamma$).
663.6	(5/2 ⁻)	375.0 <i>4</i> 549.9 <i>5</i>		288.66 113.30	$(5/2^{-})$ $(3/2^{-})$			
683.43	$(11/2^+)$	414.86 [‡] <i>12</i>	95 6	268.62	$(9/2^+)$	(M1)	0.00451 6	α (K)=0.00398 6; α (L)=0.000442 6; α (M)=7.55×10 ⁻⁵ 11 α (N)=1.016×10 ⁻⁵ 14; α (O)=7.09×10 ⁻⁷ 10
								E_{γ} : 414.9 <i>1</i> (1994Jo12), 414.87 <i>12</i> (1985Li12) both in (²⁸ Si, $\alpha p\gamma$),
								and 414.0 4 in $({}^{32}S, 2\alpha p\gamma)$.
								I_{γ} : weighted average of 111 5 (1994Jo12), 92.3 <i>19</i> (1985Li12) in (²⁸ Si,αpγ).
		533.7 [‡] 3	100.0 19	149.632	$(7/2^+)$	E2 ^d	0.00323 5	α (K)=0.00285 4; α (L)=0.000326 5; α (M)=5.56×10 ⁻⁵ 8
								$\alpha(N) = 7.40 \times 10^{-6} \ 10; \ \alpha(O) = 4.88 \times 10^{-7} \ 7$
								E _γ : 533.8 2 (1994Jo12), 534.0 3 (1985Li12) both in (²⁸ Si,αpγ), and 532.6 5 in (³² S,2αpγ).
825.58	(9/2 ⁻)	288.9 [‡] 3	59 10	537.14	$(7/2^{-})$			E_{γ} : 289.2 <i>3</i> in (²⁸ Si, <i>α</i> pγ), 288.6 <i>3</i> in (³² S,2 <i>α</i> pγ).
		537.2 [#] 5	100 17	288.66	(5/2 ⁻)			E_{γ} : 537.5 2 (1994Jo12), 537.76 <i>15</i> (1985Li12) both in (²⁸ Si,αpγ), and 536.3 5 in (³² S,2αpγ).
		556.7 [‡] 3	31.5 18	268.62	$(9/2^+)$			E_{γ} : 556.8 2 in (²⁸ Si, $\alpha p\gamma$) and 556.0 6 in (³² S, $2\alpha p\gamma$).
		675.6 2	36.0 18	149.632	$(7/2^+)$			E_{γ} : from (²⁸ Si, $\alpha p\gamma$). Other: 674.9 7 in (³² S, $2\alpha p\gamma$).
839.12	$(13/2^+)$	155.63 [#] 18	15.0 7	683.43	$(11/2^+)$	(M1)	0.0544 8	B(M1)(W.u.)=0.252 +40-33
								α (K)=0.0479 7; α (L)=0.00546 8; α (M)=0.000935 13
								$\alpha(N)=0.0001254\ 18;\ \alpha(O)=8.60\times10^{-6}\ 12$
								Mult.: D from DCO ratio; $\Delta \pi$ =(no) from level scheme.
								E_{γ} : 155.9 <i>T</i> (1994)012), 155.29 <i>Z</i> (1985)112) both in (-*51, α p γ), and 155.7 <i>Z</i> in (³² S, 2α p γ).
		570.5 [‡] 2	100 4	268.62	$(9/2^+)$	E2 ^d	0.00266 4	B(E2)(W.u.)=129 +19-16
								$\alpha(K)=0.002345 \ 33; \ \alpha(L)=0.000267 \ 4; \ \alpha(M)=4.56\times 10^{-5} \ 6$
								$\alpha(N) = 6.07 \times 10^{-6} 9; \ \alpha(O) = 4.03 \times 10^{-7} 6$
								E_{γ} : 570.5 <i>l</i> in (²⁸ Si,αpγ), 569.3 <i>6</i> in (³² S,2αpγ).
1107.4	$(9/2^{-})$	281.8 3		825.58	$(9/2^{-})$			20
		499.8+ 4	100 10	607.66	$(5/2^{-})$			E_{γ} : 499.9 2 in (²⁸ Si, $\alpha p\gamma$), 498.9 5 in (³² S, $2\alpha p\gamma$).
		570.4+ 7	25 4	537.14	$(7/2^{-})$			E_{γ} : 570.9 4 in (²⁸ Si,αpγ), 569.4 6 in (³² S,2αpγ).
1167.21	(11/2 ⁻)	341.4 [‡] 3	37 5	825.58	(9/2 ⁻)			E_{γ} : unweighted average of 341.6 2 (1994Jo12), 341.93 7 (1985Li12) both in (²⁸ Si,αpγ), and 340.8 3 in (³² S,2αpγ).
		483.8 [‡] 4	15.1 8	683.43	$(11/2^+)$			E_{γ} : 484.0 <i>3</i> in (²⁸ Si, α p γ), 483.1 <i>5</i> in (³² S, 2α p γ).
		630.0 [#] 5	100 13	537.14	$(7/2^{-})$	E2 ^d	$2.01 \times 10^{-3} 3$	$\alpha(K)=0.001774\ 25;\ \alpha(L)=0.0002005\ 28;\ \alpha(M)=3.42\times10^{-5}\ 5$
								$\alpha(N)=4.57\times10^{-6} 6; \alpha(O)=3.06\times10^{-7} 4$

7

 ${}^{81}_{39}{
m Y}_{42}$ -7

					I	Adopted I	Levels, Gammas	(continued)
							$\gamma(^{81}Y)$ (continue	<u>ed)</u>
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ ^{&}	E_f	\mathbf{J}_f^π	Mult. ^C	α^{e}	Comments
								E _γ : 630.2 2 (1994Jo12), 630.56 <i>10</i> (1985Li12) both in (²⁸ Si, <i>α</i> pγ), and 629.1 <i>6</i> in (³² S,2 <i>α</i> pγ).
1167.21	(11/2 ⁻)	899.1 [‡] 4	52.9 25	268.62	(9/2+)	(E1)	3.30×10 ⁻⁴ 5	$\alpha(K)=0.000292 4; \alpha(L)=3.16\times10^{-5} 4; \alpha(M)=5.38\times10^{-6} 8$ $\alpha(N)=7.24\times10^{-7} 10; \alpha(O)=5.06\times10^{-8} 7$ $E_{\gamma}: 899.2 3 \text{ in } (^{28}\text{Si},\alpha p\gamma) \text{ and } 897.8 9 \text{ in } (^{32}\text{S},2\alpha p\gamma).$ Mult: (D) from DCO ratio: $\Delta \pi = (ves)$ from level scheme
1250.1	(9/2-)	585.8 6		663.6	(5/2-)			$(D) \text{ from } D \in O \text{ function, } \Delta x = (G \in S) \text{ from for or sentence.}$
		713.0 7	b	537.14	$(7/2^{-})$			
1482.64	(15/2+)	643.7 [#] 7	42.6 22	839.12	(13/2 ⁺)	(M1)	1.62×10 ⁻³ 2	$\alpha(K)=0.001430\ 20;\ \alpha(L)=0.0001568\ 22;\ \alpha(M)=2.68\times10^{-5}\ 4$ $\alpha(N)=3.61\times10^{-6}\ 5;\ \alpha(O)=2.53\times10^{-7}\ 4$ $\sum_{n=0}^{\infty} (42.7\ 2.2)(1004L\ 12)(44.8)(19.(1085L\ 12)))$ both in (285L exc) and
								E_{γ} : 045.7 2 (1994)012), 044.80 78 (1985)112) both in (~Si, α p γ), and 642.5 6 in (32 S.2 α p γ).
		799.6 [#] 4	100 4	683.43	(11/2 ⁺)	[E2]	1.07×10 ⁻³ 2	$\alpha(K)=0.000945 \ I3; \ \alpha(L)=0.0001052 \ I5; \ \alpha(M)=1.796\times 10^{-5} \ 25 \ \alpha(N)=2.405\times 10^{-6} \ 34; \ \alpha(O)=1.640\times 10^{-7} \ 23$
								E_{γ} : 799.3 <i>I</i> (1994Jo12), 800.30 <i>I9</i> (1985Li12) both in (²⁸ Si, $\alpha p\gamma$), and 799.2 8 in (³² S, $2\alpha p\gamma$).
1530.14	(13/2 ⁻)	363.0 [‡] 4	38 12	1167.21	(11/2 ⁻)			 E_γ: 363.1 2 (1994Jo12), 363.62 22 (1985Li12) both in (²⁸Si,αpγ), and 362.3 4 in (³²S,2αpγ). I_γ: unweighted average of 26 4 (1994Jo12), 49 4 (1985Li12) in (²⁸Si,αpγ)
		704.1 [‡] 5	100 13	825.58	(9/2-)	(E2)	1.49×10 ⁻³ 2	$\alpha(K)=0.001313 \ 19; \ \alpha(L)=0.0001473 \ 21; \ \alpha(M)=2.51\times10^{-5} \ 4 \ \alpha(N)=3.36\times10^{-6} \ 5; \ \alpha(O)=2.272\times10^{-7} \ 32$
								E_{γ} : 704.3 <i>3</i> (1994Jo12), 704.93 <i>13</i> (1985Li12) both in (²⁸ Si,αpγ), and 703.1 7 in (³² S,2αpγ).
1550.2	$(13/2^+)$	847.2 [‡] 4 866.2 9	24 <i>4</i> 100	683.43 683.43	$(11/2^+)$ $(11/2^+)$			E_{γ} : 847.3 2 in (²⁸ Si,αpγ) and 845.8 8 in (³² S,2αpγ).
1653.29	$(17/2^+)$	170.7 [‡] <i>1</i>	3.6 4	1482.64	$(15/2^+)$			E_{γ} : 170.8 <i>I</i> and 170.5 5 in (²⁸ Si, $\alpha p\gamma$), 170.5 2 in (³² S, $2\alpha p\gamma$).
		814.17 [‡] <i>13</i>	100 4	839.12	$(13/2^+)$	(E2) ^d	1.02×10^{-3} l	B(E2)(W.u.)=111 +30-27
								$\alpha(K)=0.000903 \ 13; \ \alpha(L)=0.0001005 \ 14; \ \alpha(M)=1.715\times10^{-5} \ 24$
								$\alpha(N)=2.297\times10^{-6}$ 32; $\alpha(O)=1.568\times10^{-7}$ 22 E + 814 1 L and 814 41 17 in (28 Si and) 812 1 8 in (32 Si 2 and)
1751.6	$(17/2^+)$	911.8 9	100	839.12	$(13/2^+)$			E_{γ} : 814.1 <i>T</i> and 814.41 <i>T</i> / in (-*\$1, α p γ), 815.1 8 in (-*\$, 2α p γ).
1782.6	$(13/2^{-})$	675.2 [‡] 3	100	1107.4	(9/2 ⁻)			E_{γ} : 675.3 3 in (²⁸ Si, α p γ), 674.5 7 in (³² S, 2α p γ).
1951.93	$(15/2^{-})$	421.8 [‡] 4		1530.14	$(13/2^{-})$			E_{γ} : 421.7 5 in (²⁸ Si, α p γ), 421.9 4 in (³² S, 2α p γ).
		784.7 [‡] 2	100 13	1167.21	(11/2 ⁻)			E_{γ} : 784.7 2 and 784.9 3 in (²⁸ Si, $\alpha p\gamma$), 783.8 8 in (³² S, $2\alpha p\gamma$).
		1112.0 [‡] 8	45 4	839.12	$(13/2^+)$			E_{γ} : 1111.9 8 in (²⁸ Si,αpγ), 1112.3 <i>11</i> in (³² S,2αpγ).

 ∞

 $^{81}_{39}\mathrm{Y}_{42}\text{-}8$

L

$\gamma(^{81}Y)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ ^{&}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^C	α ^e	Comments
1993.3	(13/2 ⁻)	742.5 7 826.3 8	b	1250.1 1167.21	(9/2 ⁻) (11/2 ⁻)			
2373.7	(17/2 ⁻)	421.4 [‡] 4 720.2 7	13 ^a <5	1951.93 1653.29	$(15/2^{-})$ $(17/2^{+})$			E_{γ} : 421.9 5 in (²⁸ Si,αpγ), 421.1 4 in (³² S,2αpγ).
		843.7 [‡] 3	100 12	1530.14	(13/2 ⁻)	(E2)	9.37×10 ⁻⁴ 13	$\alpha(K)=0.000827 \ I2; \ \alpha(L)=9.18\times10^{-5} \ I3; \ \alpha(M)=1.566\times10^{-5} \ 22$ $\alpha(N)=2.099\times10^{-6} \ 29; \ \alpha(O)=1.436\times10^{-7} \ 20$ $E_{\gamma}: \ 843.6 \ 4 \ and \ 844.0 \ 3 \ in \ (^{28}Si,\alpha p\gamma), \ 842.4 \ 8 \ in \ (^{32}S,2\alpha p\gamma).$ Mult.: Q intraband $\gamma \ from \ (^{28}Si,\alpha p\gamma).$
2415 7	$(17/2^{+})$	890.1 9	<5	1482.64	$(15/2^+)$			
2415.7	$(17/2^{-1})$	804.9 9 932 7 9	b	1550.2	$(15/2^+)$ $(15/2^+)$			
2513.3	$(19/2^+)$	859.9 9	32 ^a	1653.29	$(17/2^+)$			
		1030.3 10	100 ^a	1482.64	(15/2 ⁺)	[E2]	5.82×10 ⁻⁴ 8	B(E2)(W.u.)=63 +26-19 α (K)=0.000515 7; α (L)=5.66×10 ⁻⁵ 8; α (M)=9.65×10 ⁻⁶ 14 α (N)=1.296×10 ⁻⁶ 18; α (O)=8.97×10 ⁻⁸ 13
2594.5	(17/2 ⁻)	811.9 [‡] 4	100	1782.6	(13/2 ⁻)	[E2]	1.03×10 ⁻³ 1	α (K)=0.000910 <i>13</i> ; α (L)=0.0001012 <i>14</i> ; α (M)=1.727×10 ⁻⁵ 24 α (N)=2.313×10 ⁻⁶ 33; α (O)=1.579×10 ⁻⁷ 22 E _y : 812.1 4 in (²⁸ Si, α py), 811.1 8 in (³² S, 2α py).
2686.7	(21/2+)	1033.5 [‡] 2	100	1653.29	(17/2 ⁺)	E2	5.78×10 ⁻⁴ 8	B(E2)(W.u.)=82 +14-13 α (K)=0.000511 7; α (L)=5.62×10 ⁻⁵ 8; α (M)=9.58×10 ⁻⁶ 13 α (N)=1.287×10 ⁻⁶ 18; α (O)=8.90×10 ⁻⁸ 12 E _{γ} : 1033.5 2 and 1034 1 in (²⁸ Si, α p γ), 1032.8 10 in (³² S, 2α p γ). Mult.: O from DCO ratio; not M2 from RUL.
2860.6	$(19/2^{-})$	486.3 5	9 <mark>a</mark>	2373.7	$(17/2^{-})$			
		908.9 [#] 7	100 12	1951.93	(15/2 ⁻)	[E2]	7.81×10 ⁻⁴ 11	B(E2)(W.u.)=58 +40-26 α (K)=0.000690 10; α (L)=7.63×10 ⁻⁵ 11; α (M)=1.302×10 ⁻⁵ 18 α (N)=1.746×10 ⁻⁶ 25; α (O)=1.200×10 ⁻⁷ 17 E _y : 908.6 3 and 910.1 4 in (²⁸ Si, α py), 907.9 9 in (³² S,2 α py).
		1208.1 [‡] 6	64 5	1653.29	(17/2 ⁺)	[E1]	2.37×10 ⁻⁴ 3	$\alpha(K)=0.0001674\ 23;\ \alpha(L)=1.798\times10^{-5}\ 25;\ \alpha(M)=3.06\times10^{-6}\ 4$ $\alpha(N)=4.13\times10^{-7}\ 6;\ \alpha(O)=2.90\times10^{-8}\ 4;\ \alpha(IPF)=4.77\times10^{-5}\ 8$ B(E1)(W.u.)=0.00017 +12-8 E _{\gamma} : 1208.0 6 in (²⁸ Si, α py), 1208.7 12 in (³² S, 2α py). L _i : other: 24 from (³² S, 2α py).
2866.5	$(17/2^{-})$	872.2 9	100	1993.3	$(13/2^{-})$			1
2917.4	$(21/2^+)$	1164.7 <i>12</i> 1264 5 <i>13</i>	b	1751.6	$(17/2^+)$ $(17/2^+)$			
3342.6	(21/2 ⁻)	481.9 5	12 ^{<i>a</i>}	2860.6	$(19/2^{-})$			

9

From ENSDF

 $^{81}_{39}\mathrm{Y}_{42}\text{-}9$

						Adopte	ed Levels, Gamm	as (continued)
							$\gamma(^{81}\text{Y})$ (contin	nued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Ιγ ^{&}	E_f	J_f^π	Mult. ^C	α^{e}	Comments
3342.6	(21/2 ⁻)	968.9 [‡] 5	100 ^{<i>a</i>}	2373.7	(17/2 ⁻)	[E2]	6.71×10 ⁻⁴ 9	B(E2)(W.u.)=109 +47-34 α (K)=0.000593 8; α (L)=6.54×10 ⁻⁵ 9; α (M)=1.116×10 ⁻⁵ 16 α (N)=1.497×10 ⁻⁶ 21; α (O)=1.032×10 ⁻⁷ 15 E _γ : 968.8 5 in (²⁸ Si, αpγ), 969.2 10 in (³² S, 2αpγ).
3360.9	(19/2 ⁻)	494.6 5 1409.7 <i>14</i> 1709.7 <i>17</i>		2866.5 1951.93 1653.29	$(17/2^{-})$ $(15/2^{-})$ $(17/2^{+})$			
3413.1	(21/2+)	996.2 <i>10</i> 1760.5 <i>18</i>	Ь	2415.7 1653.29	$(17/2^+)$ $(17/2^+)$			
3559.6 3739.1	(21/2 ⁻) (21/2 ⁻)	965.1 ^{‡@} 4 378.7 4 870.9 9	100 <i>b</i>	2594.5 3360.9 2866.5	$(17/2^{-})$ $(19/2^{-})$ $(17/2^{-})$			E_{γ} : 965.2 <i>4</i> in (²⁸ Si, <i>α</i> pγ), 964.6 <i>10</i> in (³² S,2 <i>α</i> pγ).
3745.9	(23/2+)	1059.6 <i>11</i> 1232.1 <i>12</i>	14 ^a 100 ^a	2686.7 2513.3	(21/2 ⁺) (19/2 ⁺)	[E2]	4.05×10 ⁻⁴ 6	B(E2)(W.u.)=53 +40-19 α (K)=0.000347 5; α (L)=3.79×10 ⁻⁵ 5; α (M)=6.46×10 ⁻⁶ 9 α (N)=8.68×10 ⁻⁷ 12; α (O)=6.05×10 ⁻⁸ 9; α (IPF)=1.312×10 ⁻⁵ 28
3894.6	(23/2 ⁻)	1033.9 [‡] 5	100	2860.6	(19/2 ⁻)	[E2]	5.78×10 ⁻⁴ 8	B(E2)(W.u.)=52 +17-13 α (K)=0.000511 7; α (L)=5.61×10 ⁻⁵ 8; α (M)=9.58×10 ⁻⁶ 13 α (N)=1.286×10 ⁻⁶ 18; α (O)=8.90×10 ⁻⁸ 12 E _{γ} : 1033.7 4 in (²⁸ Si, α p γ), 1035.2 10 in (³² S, 2α p γ).
3914.0	(25/2+)	1227.3 [‡] 2	100	2686.7	(21/2+)	E2	4.08×10 ⁻⁴ 6	B(E2)(W.u.)=65 +23-14 α (K)=0.000350 5; α (L)=3.82×10 ⁻⁵ 5; α (M)=6.51×10 ⁻⁶ 9 α (N)=8.76×10 ⁻⁷ 12; α (O)=6.10×10 ⁻⁸ 9; α (IPF)=1.228×10 ⁻⁵ 18 E _{γ} : 1227.3 2 and 1227 3 in (²⁸ Si, α p γ), 1226.0 12 in (³² S, 2α p γ). Mult.: Q from DCO ratio; not M2 from RUL.
3992.1	$(25/2^+)$	1074.1 <i>11</i> 1306.3 <i>13</i>	b	2917.4 2686.7	$(21/2^+)$ $(21/2^+)$			
4183.2	(23/2 ⁻)	444.1 <i>4</i> 821.9 8	22 ^a 100 ^a	3739.1 3360.9	(21/2 ⁻) (19/2 ⁻)	[E2]	9.99×10 ⁻⁴ 14	B(E2)(W.u.)= $5 \times 10^{1} + 13 - 3$ α (K)=0.000882 13; α (L)= 9.81×10^{-5} 14; α (M)= 1.674×10^{-5} 24 α (K)= 2.242×10^{-6} 32; α (C)= 1.522×10^{-7} 22
		1322.6 <i>13</i>	82 ^a	2860.6	(19/2 ⁻)	[E2]	3.70×10 ⁻⁴ 5	$\alpha(X)=2.242\times10^{-5}52; \ \alpha(O)=1.552\times10^{-2}22$ $\alpha(K)=0.000299 \ 4; \ \alpha(L)=3.25\times10^{-5} \ 5; \ \alpha(M)=5.55\times10^{-6} \ 8$ $\alpha(N)=7.46\times10^{-7} \ 11; \ \alpha(O)=5.21\times10^{-8} \ 7; \ \alpha(IPF)=3.23\times10^{-5} \ 5$ B(E2)(W.u.)=4 + 10-3
4440.1	(25/2 ⁻)	1097.5 [‡] 3	100	3342.6	(21/2 ⁻)	[E2]	5.05×10 ⁻⁴ 7	B(E2)(W.u.)= $1.0 \times 10^2 + 9 - 4$ α (K)= $0.000446 6$; α (L)= $4.89 \times 10^{-5} 7$; α (M)= $8.35 \times 10^{-6} 12$ α (N)= $1.122 \times 10^{-6} 16$; α (O)= $7.78 \times 10^{-8} 11$ E _{γ} : 1097.5 3 in (²⁸ Si, α p γ), 1097.0 11 in (³² S, 2α p γ).

10

From ENSDF

L

$\gamma(^{81}Y)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ ^{&}	E_f	J_f^{π}	Mult. ^C	α ^e	Comments
4552.1	(25/2+)	1137.8 <i>11</i> 1865.5 <i>19</i>	b	3413.1 2686.7	$(21/2^+)$ $(21/2^+)$			
4701.4	$(25/2^{-})$	962.3 10	100	3739.1	$(21/2^{-})$			
4716.5	(25/2 ⁻)	1156.9 12	100	3559.6	(21/2 ⁻)	[E2]	4.53×10 ⁻⁴ 6	B(E2)(W.u.)=16 6 α (K)=0.000397 6; α (L)=4.35×10 ⁻⁵ 6; α (M)=7.42×10 ⁻⁶ 11 α (N)=9.97×10 ⁻⁷ 14; α (O)=6.93×10 ⁻⁸ 10; α (IPF)=3.29×10 ⁻⁶ 11
5032.1	$(27/2^+)$	1286.0 <i>13</i>	100	3745.9	$(23/2^+)$			
5090.0	(27/2 ⁻)	1195.4 [‡] 4	100	3894.6	(23/2 ⁻)	[E2]	4.26×10 ⁻⁴ 6	B(E2)(W.u.)=1.1×10 ² +16-6 α (K)=0.000370 5; α (L)=4.04×10 ⁻⁵ 6; α (M)=6.90×10 ⁻⁶ 10 α (N)=9.28×10 ⁻⁷ 13; α (O)=6.46×10 ⁻⁸ 9; α (IPF)=7.35×10 ⁻⁶ 12 E _Y : 1195.3 4 in (²⁸ Si, α py), 1195.9 12 in (³² S, 2α py).
5138.0	(27/2 ⁺)	1392.3 14	100	3745.9	(23/2+)	[E2]	3.53×10 ⁻⁴ 5	B(E2)(W.u.)=21 +10-6 α (K)=0.000269 4; α (L)=2.92×10 ⁻⁵ 4; α (M)=4.98×10 ⁻⁶ 7 α (N)=6.70×10 ⁻⁷ 9; α (O)=4.69×10 ⁻⁸ 7; α (IPF)=4.96×10 ⁻⁵ 8
5213.1	(27/2 ⁻)	1029.9 <i>10</i>		4183.2	(23/2 ⁻)	[E2]	5.83×10 ⁻⁴ 8	B(E2)(W.u.)=8×10 ¹ +5-2 α (K)=0.000515 7; α (L)=5.66×10 ⁻⁵ 8; α (M)=9.66×10 ⁻⁶ 14 α (N)=1.298×10 ⁻⁶ 18; α (O)=8.97×10 ⁻⁸ 13
5270.9	(29/2+)	1357.0 [‡] 4	100	3914.0	(25/2+)	E2	3.61×10 ⁻⁴ 5	B(E2)(W.u.)= $1.0 \times 10^2 + 7-3$ α (K)= $0.000283 4$; α (L)= $3.08 \times 10^{-5} 4$; α (M)= $5.25 \times 10^{-6} 7$ α (N)= $7.07 \times 10^{-7} 10$; α (O)= $4.94 \times 10^{-8} 7$; α (IPF)= $4.05 \times 10^{-5} 6$ E _{γ} : 1357.1 4 and 1360 5 in (²⁸ Si, α p γ), 1356.0 14 in (³² S, 2α p γ). Mult.: stretched Q from DCO ratio; not M2 from RUL.
5499.8	$(29/2^+)$	1585.1 <i>16</i>	100	3914.0	$(25/2^+)$			
5664.3	(29/2 ⁻)	1223.9‡ 9	100	4440.1	(25/2 ⁻)	[E2]	4.10×10 ⁻⁴ 6	B(E2)(W.u.)=8×10 ¹ +6-3 α (K)=0.000352 5; α (L)=3.84×10 ⁻⁵ 5; α (M)=6.55×10 ⁻⁶ 9 α (N)=8.81×10 ⁻⁷ 12; α (O)=6.14×10 ⁻⁸ 9; α (IPF)=1.169×10 ⁻⁵ 22 E _y : 1223.4 9 in (²⁸ Si, α py), 1224.8 12 in (³² S, 2α py).
5744.5	(29/2 ⁻)	1305.1 <i>13</i>	100	4440.1	(25/2-)	[E2]	3.75×10 ⁻⁴ 5	B(E2)(W.u.)=40 +42-17 α (K)=0.000307 4; α (L)=3.35×10 ⁻⁵ 5; α (M)=5.71×10 ⁻⁶ 8 α (N)=7.68×10 ⁻⁷ 11; α (O)=5.36×10 ⁻⁸ 8; α (IPF)=2.82×10 ⁻⁵ 5
5753.5	$(29/2^{-})$	1052.0 11	100	4701.4	$(25/2^{-})$			
5836.5	$(29/2^+)$	1282.8 <i>13</i> 1925.1 <i>19</i>	<i>b</i>	4552.1 3914.0	$(25/2^+)$ $(25/2^+)$ $(25/2^-)$			
6046.1	(29/2)	1329.5 13	100	4/10.5	(25/2)	[[20]	4.40×10^{-4} 6	$D(E2)(W_{12}) = 20 + 12 - 7$
0380.7	(31/2)	11/5.0 12	100	3213.1	(27/2)	[E2]	4.40×10 0	$\alpha(K)=0.000385 5; \alpha(L)=4.21\times10^{-5} 6; \alpha(M)=7.18\times10^{-6} 10$ $\alpha(N)=9.66\times10^{-7} 14; \alpha(O)=6.72\times10^{-8} 10; \alpha(IPF)=4.79\times10^{-6} 14$
		1296.7 <i>13</i>	67 <mark>4</mark>	5090.0	$(27/2^{-})$	[E2]	$3.78 \times 10^{-4} 5$	B(E2)(W.u.)=8.0 + 48 - 32

11

						Auop	Jeu Levels, Gai	innas (continucu)
							$\gamma(^{81}\mathrm{Y})$ (con	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E_f	\mathbf{J}_f^{π}	Mult. ^C	α^{e}	Comments
								$\alpha(K)=0.0003114; \alpha(L)=3.39\times10^{-5}5; \alpha(M)=5.79\times10^{-6}8$
(1(0,0	(21/2-)	1270 0 14	100	5000 0	$(27/2^{-})$	[[20]	$2.5(\times 10^{-4})$	$\alpha(N)=7.78\times10^{-7}$ 11; $\alpha(O)=5.43\times10^{-8}$ 8; $\alpha(IPF)=2.63\times10^{-3}$ 5
0409.9	(31/2)	13/9.9 14	100	5090.0	(27/2)	[E2]	3.30×10 · 3	B(E2)(W.U.) = 10 + 8 - 3 $\alpha(K) = 0.000274 4 \alpha(L) = 2.97 \times 10^{-5} 4 \alpha(M) = 5.07 \times 10^{-6} 7$
								$\alpha(\mathbf{N}) = 6.83 \times 10^{-7}$ 10; $\alpha(\mathbf{O}) = 4.78 \times 10^{-8}$ 7; $\alpha(\mathbf{IPF}) = 4.63 \times 10^{-5}$ 7
6509.1	$(31/2^+)$	1371.3 14	b	5138.0	$(27/2^+)$			
		1476.8 15		5032.1	$(27/2^+)$			
6629.3	$(33/2^+)$	1129.2 11	1.0 ^a	5499.8	$(29/2^+)$	[E2]	4.76×10^{-4} 7	B(E2)(W.u.)=1.8 + 7 - 5
		1359.0 14	100 4	5270.9	$(29/2^+)$	[E2]	$3.60 \times 10^{-4} 5$	B(E2)(W.u.)=70 +24-14
								$\alpha(\mathbf{K}) = 0.000282 \ 4; \ \alpha(\mathbf{L}) = 3.07 \times 10^{-3} \ 4; \ \alpha(\mathbf{M}) = 5.24 \times 10^{-6} \ 7$
6672 7	$(31/2^+)$	15347 15	100	5138.0	$(27/2^{+})$			$\alpha(N) = 7.05 \times 10^{\circ} / 10; \ \alpha(O) = 4.93 \times 10^{\circ} / ; \ \alpha(IPF) = 4.10 \times 10^{\circ} / 10^{\circ}$
6893.3	$(31/2^{-})$ $(33/2^{-})$	1139.8 11	100	5753.5	$(27/2^{-})$ $(29/2^{-})$			
6911.6	(33/2-)	1167.0 12	43 ^a	5744.5	(29/2 ⁻)	[E2]	$4.45 \times 10^{-4} 6$	$\alpha(K)=0.000390 6; \alpha(L)=4.26\times10^{-5} 6; \alpha(M)=7.28\times10^{-6} 10$
								α (N)=9.78×10 ⁻⁷ 14; α (O)=6.80×10 ⁻⁸ 10; α (IPF)=4.15×10 ⁻⁶ 13
			1000		(0.0.10.)			B(E2)(W.u.)=27+36-15
		1247.4 12	1004	5664.3	$(29/2^{-})$	[E2]	3.98×10^{-4} 6	$B(E2)(W.u.) = 5 \times 10^{4} + 6 - 3$
								$\alpha(\mathbf{K}) = 0.000338 3; \ \alpha(\mathbf{L}) = 3.09 \times 10^{-5} 3; \ \alpha(\mathbf{M}) = 0.29 \times 10^{-5} 9$
6951.1	$(33/2^+)$	1679.9 17	100	5270.9	$(29/2^+)$			$u(N) = 8.40 \times 10$ 12, $u(O) = 5.90 \times 10$ 8, $u(IFF) = 1.597 \times 10$ 52
7090.3	$(33/2^{-})$	1346.7 13	20 ^{<i>a</i>}	5744.5	$(29/2^{-})$	[E2]	3.63×10 ⁻⁴ 5	$\alpha(K)=0.000288 4; \alpha(L)=3.13\times10^{-5} 4; \alpha(M)=5.34\times10^{-6} 8$
								$\alpha(N)=7.19\times10^{-7}$ 10; $\alpha(O)=5.02\times10^{-8}$ 7; $\alpha(IPF)=3.80\times10^{-5}$ 6
								B(E2)(W.u.)=20 + 29 - 11
		1424.9 <i>14</i>	1004	5664.3	$(29/2^{-})$	[E2]	$3.48 \times 10^{-4} 5$	$B(E2)(W.u.) = 8 \times 10^{4} + 11 - 4$ $(W) = 0.0000555 (4 - (1)) = 2.79 \times 10^{-5} (4 - (10)) = 4.75 \times 10^{-6} (7 - 10)$
								$\alpha(\mathbf{K}) = 0.000256 \ 4; \ \alpha(\mathbf{L}) = 2.78 \times 10^{-5} \ 4; \ \alpha(\mathbf{M}) = 4.75 \times 10^{-5} \ 0$
7315 3	$(33/2^{+})$	1478 4 15	b	5826 5	$(20/2^{+})$			$u_{(17)} = 0.52 \times 10^{-7}, u_{(07)} = 4.40 \times 10^{-7}, u_{(177)} = 3.00 \times 10^{-7}$
1313.3	(33/2)	2045.1.20		5270.9	$(29/2^+)$			
7511.7	$(33/2^{-})$	1465.6 15	100	6046.1	$(29/2^{-})$			
7710.8	$(35/2^{-})$	1324.1 13	100	6386.7	$(31/2^{-})$			
7864.4	$(35/2^{-})$	1394.5 14	100	6469.9	$(31/2^{-})$			
7928.6	(35/2) $(35/2^{-})$	1422.4 <i>14</i> 1458 7 <i>15</i>	100	0409.9 6469 9	(31/2) $(31/2^{-})$			
7947.7	$(35/2^+)$	1438.6 14	100	6509.1	$(31/2^+)$			
8079.7	$(37/2^+)$	1450.4 15	100	6629.3	$(33/2^+)$	[E2]	$3.46 \times 10^{-4} 5$	$B(E2)(W.u.)=5\times10^{1}+5-2$
								$\alpha(K)=0.0002473\ 35;\ \alpha(L)=2.68\times10^{-5}\ 4;\ \alpha(M)=4.58\times10^{-6}\ 6$
00060	(0 F (0 -)		100	<i></i>	(24/2-)			$\alpha(N)=6.16\times10^{-7}$ 9; $\alpha(O)=4.32\times10^{-8}$ 6; $\alpha(IPF)=6.68\times10^{-5}$ 11
8096.9	$(35/2^{-})$	1627.0 16	100	6469.9	$(31/2^{-})$ $(31/2^{+})$			
0100	(33/2)	1407.4 13	100	0072.7	(31/2)			

12

L

$\gamma(^{81}\text{Y})$ (continued)												
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Ιγ ^{&}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^C	α^{e}	Comments				
8276.0	(37/2 ⁻)	1364.4 14	100	6911.6	(33/2 ⁻)	[E2]	3.59×10 ⁻⁴ 5	B(E2)(W.u.)= $6 \times 10^{1} + 10 - 4$ α (K)=0.000280 4; α (L)= 3.05×10^{-5} 4; α (M)= 5.20×10^{-6} 7 α (N)= 6.99×10^{-7} 10; α (O)= 4.89×10^{-8} 7; α (IPF)= 4.23×10^{-5} 7				
8504.8	$(37/2^+)$	1553.5 <i>16</i> 1875.8 <i>19</i>	b	6951.1 6629.3	$(33/2^+)$ $(33/2^+)$							
8519.8	(37/2 ⁻)	1429.5 14	100	7090.3	(33/2 ⁻)	[E2]	3.48×10 ⁻⁴ 5	B(E2)(W.u.)=21 +10-5 α (K)=0.000255 4; α (L)=2.76×10 ⁻⁵ 4; α (M)=4.72×10 ⁻⁶ 7 α (N)=6.35×10 ⁻⁷ 9; α (O)=4.45×10 ⁻⁸ 6; α (IPF)=6.02×10 ⁻⁵ 9				
8583.9	$(37/2^{-})$	1493.6 15	100	7090.3	$(33/2^{-})$							
8917.8	$(37/2^+)$	1602.5 16	100	7315.3	$(33/2^+)$							
9167.7	$(39/2^{-})$	1456.9 15	100	7710.8	$(35/2^{-})$							
9323	$(39/2^+)$	1374.8 <i>14</i>	100	7947.7	$(35/2^+)$							
9594.3	$(41/2^+)$	$1514.6^{@}$ 15	100	8079.7	$(37/2^+)$							
0807.0	$(11/2^{-})$	1531.0@ 15	100	8276.0	$(37/2^{-})$							
9818	$(\frac{1}{2})$ $(\frac{30}{2^+})$	1738 2 17	100	8079.7	$(37/2^+)$							
9981	$(3)/2^{+})$ $(41/2^{+})$	1901 6 19	100	8079.7	$(37/2^+)$							
10063	$(41/2^{-})$	1479.5 15	100	8583.9	$(37/2^{-})$							
10193	$(41/2^{-})$	1673.3 17	100	8519.8	$(37/2^{-})$							
10777	$(43/2^{-})$	1609.5 16	100	9167.7	$(39/2^{-})$							
10884	$(43/2^+)$	1561.2 16	100	9323	$(39/2^+)$							
11234	$(45/2^+)$	1639.6 16	100	9594.3	$(41/2^+)$	[E2]	3.61×10^{-4} 5	$B(E2)(W.u.) = 5 \times 10^{1} + 9 - 3$				
								α (K)=0.0001941 27; α (L)=2.099×10 ⁻⁵ 30; α (M)=3.58×10 ⁻⁶ 5 α (N)=4.82×10 ⁻⁷ 7; α (O)=3.39×10 ⁻⁸ 5; α (IPF)=0.0001414 21				
11520	$(45/2^{-})$	1712.4 17	100	9807.9	$(41/2^{-})$	[E2]	$3.75 \times 10^{-4} 5$	B(E2)(W.u.) = 17 + 19 - 8				
								α (K)=0.0001785 25; α (L)=1.928×10 ⁻⁵ 27; α (M)=3.29×10 ⁻⁶ 5 α (N)=4.43×10 ⁻⁷ 6; α (O)=3.12×10 ⁻⁸ 4; α (IPF)=0.0001733 25				
11545	$(45/2^+)$	1950.9 20	100	9594.3	$(41/2^+)$							
11617	$(45/2^{-})$	1553.1 16	100	10063	$(41/2^{-})$							
12014	$(45/2^{-})$	1820.7 18	100	10193	$(41/2^{-})$							
12570	(47/2)	1792.9 18	100	10///	(43/2)							
12579	$(4/2^{+})$	1695.3 17	100	10884	$(43/2^+)$	(10)	4.11.10-4.6					
13088	(49/2+)	1854.0 19	100	11234	(45/2+)	[E2]	4.11×10 ⁻⁴ 6	B(E2)(W.u.)=10 +18-6 α (K)=0.0001535 22; α (L)=1.655×10 ⁻⁵ 23; α (M)=2.82×10 ⁻⁶ 4 α (N)=3.80×10 ⁻⁷ 5; α (O)=2.68×10 ⁻⁸ 4; α (IPF)=0.0002376 34				
13282	$(49/2^+)$	2048.1 20	100	11234	$(45/2^+)$							
13423	$(49/2^{-})$	1902.5 19	100	11520	$(45/2^{-})$							
14099	$(49/2^{-})$	2085.4 21	100	12014	$(45/2^{-})$							
14483	$(51/2^+)$	1904.1 19	100	12579	$(47/2^+)$							
14806?	$(51/2^{-})$	2235.5 ^ƒ 22	100	12570	$(47/2^{-})$							

13

 $^{81}_{39}\mathrm{Y}_{42}$ -13

$\gamma(^{81}Y)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_{f}^{π}	E _i (level)	E_{γ}^{\dagger}	Ι _γ &	E_f
15248	$(53/2^+)$	2160.2 22	100	13088	$(49/2^+)$	1225.0+x	1225.0 12	100	0+x
15523?	$(53/2^{-})$	2100.2 ^{<i>f</i>} 21	100	13423	$(49/2^{-})$	2659.6+x	1434.6 14	100	1225.0+x
15572?	$(53/2^{-})$	2149.2 ^{<i>f</i>} 21	100	13423	$(49/2^{-})$	4261.5+x	1601.9 16	100	2659.6+x
16440?	$(53/2^{-})$	2340.9 ^{<i>f</i>} 23	100	14099	$(49/2^{-})$	6034+x	1772.3 18	100	4261.5+x
16785?	$(55/2^+)$	2301.8 ^{<i>f</i>} 23	100	14483	$(51/2^+)$	8004+x	1969.9 20	100	6034+x
17670?	$(57/2^+)$	2421.3 ^f 24	100	15248	$(53/2^+)$				

[†] From ⁵⁸Ni(³²S, $2\alpha p\gamma$), except as noted.

* Weighted average of listed data in the comments from ${}^{58}Ni({}^{28}Si,\alpha p\gamma)$ and ${}^{58}Ni({}^{32}S,2\alpha p\gamma)$. The uncertainty is the lowest input value, if yields lower than this value.

[#] Unweighted average of listed data in the comments from ${}^{58}Ni({}^{28}Si,\alpha p\gamma)$ and ${}^{58}Ni({}^{32}S,2\alpha p\gamma)$.

[@] Avoided listing of B(E2)(W.u.) for an expected [E2] transition, upper bound exceeds RUL=300. Larger uncertainty in input data (one or more).

[&] From ⁵⁸Ni(²⁸Si, α p γ); based on I γ of 1994Jo12, except as noted.

^{*a*} From ⁵⁸Ni(32 S,2 α p γ) (2002Ka61); uncertainty unstated by authors.

^b Based on transition line widths in the level scheme drawing of 1997Sc17 in 58 Ni(32 S,2 α p γ), this is the most intense γ deexciting its parent level.

^c From measured DCO ratios and/or $\gamma(\theta)$ in ⁵⁸Ni(²⁸Si, $\alpha p\gamma$), except as noted; assigning $\Delta \pi$ =(no) to intraband transitions.

^d Q from $\gamma(\theta)$ and/or DCO ratio in ⁵⁸Ni(²⁸Si, $\alpha p\gamma$); not M2 from RUL and T_{1/2} (or T_{1/2} limit).

^e Additional information 4.

14

^f Placement of transition in the level scheme is uncertain.

 ${}^{81}_{39}Y_{42}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{81}_{39} Y_{42}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 ${}^{81}_{39}Y_{42} \\$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 ${}^{81}_{39}Y_{42}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{81}_{39} Y_{42}$

 $^{81}_{39}Y_{42}$

