	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

 $Q(\beta^-)=-5815\ 6;\ S(n)=9288\ 5;\ S(p)=6642\ 4;\ Q(\alpha)=-3784\ 4$ 2021Wa16 $S(2n)=22191\ 8,\ S(2p)=11664\ 5\ (2021Wa16).$

Other Reactions: Fe(²⁸Si,X γ), E(²⁸Si)=95 MeV; CAESAR detector array (7 in-plane, Compton-suppressed Ge detectors); magnetic field perpendicular to detector plane; measured (unperturbed) DCO to determine alignment parameter σ /J=0.36 2; measurements are ongoing to determine hyperfine field of Sr in Fe and lifetime of 221 level, both of which are of relevance to a determination of the g-factor for the 221 level (2001St09, 2002Ro36).

Measured yields of ⁸¹Sr for 1000 stopped antiproton on ⁹⁸Mo: 1.8 *3*. The targets were irradiated at LEAR, CERN with an average proton rate of 10^4 per sec for about six hours. Identified residual ⁸¹Sr by γ -spectroscopy (1986Mo20).

⁸¹Sr Levels

Cross Reference (XREF) Flags

			Α	⁸¹ Y ε decay (70.4 s) D ⁵⁸ Ni(²⁹ Si, α 2p γ)
			В	53 Cr(31 P,p2n γ) E 58 Ni(30 Si, α 2pn γ)
			С	⁵⁵ Mn(²⁹ Si,p2n γ), F ⁷⁸ Kr(α ,n γ), ⁸⁰ Kr(α ,3n γ)
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.00	1/2-	22.3 min 4	ABCDEF	$%ε+%β^+=100$ μ=+0.543 4 J ^π : J=1/2 from hyperfine structure (1987Bu11). π=- from comparison of μ with Schmidt diagram. T _{1/2} : weighted average of 24.5 min 20 (1971Do01), 26.0 min 15 (1973Br32), 22.15 min 22 (1980Ho28), and 25 min 2 (1982De36). μ: from 2019StZV, 1990Bu12 (collinear fast-beam laser spectroscopy); uncertainty arising from hfs anomaly included; ⁸⁷ Sr standard. Others: +0.542 4 (1987An02, atomic beam with laser fluorescence spectroscopy), +0.5434 8 (1990Li28 – fast ion-beam collinear laser spectroscopy). $u^2_{2} /2(chem) = 4.256 fm 2 (2012Am02)$
				$< r^{2} > r^{2} < (charge) = 4.255 \text{ fm } 3 (2013 \text{ Ano} 2).$ $\Delta < r^{2} > r^{80} \text{Sr}, r^{81} \text{Sr}) = -0.011 \text{ fm}^{2} 9 (1996 \text{Li} 25; \text{ statistical uncertainty only}).$
79.20 ^{<i>l</i>} 4	(5/2)-	0.39 µs 6	ABCDEF	J ^π : E2, $\Delta \pi$ =no 79γ to 1/2 ⁻ g.s.; 3/2,5/2 from excit in (α,xnγ). T _{1/2} : weighted average of 0.326 μs 55 and 0.370 μs 85 from ⁸¹ Y ε decay, 0.55 μs 10 from ⁷⁸ Kr(α,nγ) (1983Ar16) and 0.44 μs 10 (1989Wu01 – ⁵⁸ Ni(²⁸ Si,4pnγ)).
89.02 ^{<i>f</i>} 7	(7/2 ⁺)	6.4 µs 5	ABCDEF	J ^{π} : absence of γ to 1/2 ⁻ g.s.; level energy systematics for N=43 nuclei favor (7/2 ⁺). T _{1/2} : from γ (t) (1989Wu01 – produced from ⁵⁸ Ni(²⁸ Si,4pn γ)). Other: >1.5 μ s from (α ,xn γ).
119.76 ^{<i>i</i>} 4	(1/2 ⁺)	24 ns 4	ABC EF	J^{π} : 217 γ from (5/2 ⁺) has mult. (E2) and linear polarization which excludes a J to J-1 transition; 5/2 unlikely from 119 γ excit. π : B(E1)(W.u.) more typical in this mass region than B(M1)(W.u.) for 119 γ to 1/2 ⁻ . T _{1/2} : from pulsed beam measurements in (α , $n\gamma$).
132.2 <mark>8</mark> 4	$(9/2^+)$	<9 ns	ABCDEF	J^{π_1} : M1+E2, $\Delta J=1$, 43 γ to (7/2 ⁺) 89; J(132 level)>J(79 level) from 43 γ excit.
155.21 ⁿ 10	3/2-	74 ps 20	ABC EF	J^{π} : excit 155 γ requires this level to have one of the lowest spins occurring in ⁸¹ Sr; not J=1/2 or 5/2 from 155 $\gamma(\theta)$ in $(\alpha,n\gamma)$; M1+E2 γ from 5/2 ⁻ ; D(+Q) 155 γ to 1/2 ⁻ g.s
203.36 5	(5/2+)	1.1 ns <i>3</i>	A F	J ^π : D, ΔJ=0, 124γ to (5/2) ⁻ 79; γ to (7/2 ⁺); allowed ε decay (log <i>ft</i> ≈5.6) from (5/2 ⁺) ⁸¹ Y. T _{1/2} : from (α,nγ). Other: <3.5 ns (⁸¹ Y ε decay).

Continued on next page (footnotes at end of table)

⁸¹Sr Levels (continued)

E(level) [†]	J ^π ‡	T _{1/2} #	XREF	Comments
220.82 ^h 7	3/2(+)	0.63 ns 20	ABC EF	J^{π} : J=3/2 from 221 $\gamma(\theta)$ and 221 γ excit; M1+E2 γ to (1/2 ⁺).
294.9 4	$(3/2)^{-}$		F	J^{π} : M1 294.9 γ to $1/2^{-}$ g.s
336.22 ⁱ 9	$(5/2^+)$	0.16 ns 5	ABC EF	J^{π} : from (α ,xn γ). (M1+E2) γ to (3/2 ⁺); anisotropy 115 γ too large for a 3/2 to 3/2 transition; excit 115 γ favors J=5/2.
366.5 ^m 3	$(7/2)^{-}$	53 ps 15	BCDEF	J ^{π} : M1+E2, Δ J=1, γ to (5/2) ⁻ ; band assignment.
379.25 <mark>°</mark> 22	5/2-	12 ps 6	BC EF	J^{π} : E2, $\Delta J=2$, γ to $1/2^{-}$; band assignment.
535.8 6	$(5/2^{-})$		F	J^{π} : may be member of a $3/2^{-}$ band with the 295 level as bandhead.
558.2 ⁿ 3 611.54 8	$7/2^{(+)}$ (7/2 ⁺)	17 ps <i>17</i> <7 ns	BC EF A F	J^{π} : stretched E2 γ to $3/2^{(+)}$; γ to $(5/2^+)$; band assignment. J^{π} : D γ to $(5/2^+)$; band assignment.
				$T_{1/2}$: from observation of prompt 408 γ -511 γ coin and time resolution in ⁸¹ Y ε decay.
632.6 ⁿ 3	$(7/2)^{-}$		BC EF	J^{π} : M1 253.5 γ to 5/2 ⁻ 379; 477 γ to 3/2 ⁻ 155; band assignment.
707.0 ¹ 4	$(9/2)^{-}$		BCDEF	J ^{π} : E2 628 γ to (5/2) ⁻ 79; band assignment.
796.5 ¹ 4	(9/2+)		BC EF	J^{π} : D 238 γ to 7/2 ⁽⁺⁾ 558; stretched Q intraband 460 γ to (5/2 ⁺) 336; band assignment.
810.7 ^{<i>f</i>} 6	$(11/2^+)$	2.8 ps 9	BC EF	J ^{π} : M1+E2 679 γ to (9/2 ⁺) 132; band assignment.
904.7 <mark>8</mark> 6	$(13/2^+)$	4.6 ps 13	BCDEF	J^{π} : E2 772 γ to (9/2 ⁺); band assignment.
$999.9^{\circ} 4$	$(9/2^{-})$		BC EF	J^{π} : Q 621 γ to 5/2 ⁻ 379; 367 γ to (7/2) ⁻ 633; band assignment.
1055.4^{h} 5	(11/2)		BCDEF	J^{T} : E2 γ to $(7/2)$; D γ to $(9/2)$; band assignment.
1109.2^{n} 5 1332 6 ⁿ 5	$(11/2^{+})$ $(11/2^{-})$		BC EF	J [*] : Q γ to (//2) ⁺ ; D γ to (9/2 ⁺); band assignment. I ^{π} : α to (7/2) ⁻ ; band assignment
1470.5^{i} 5	(11/2) $(13/2^+)$	>0.76 ps	BC EF	I^{π} : $\Omega \propto t_{\Omega} (9/2^+)$: hand assignment
$1505.6^{l}6$	$(13/2^{-})$	20.70 ps	BCDFF	I^{π} : $\Omega \neq to (9/2)^{-}$: hand assignment
$1739.8 \int 6$	$(15/2^+)$		BC FF	I^{π} : M1+F2 835 γ to (13/2 ⁺) 905: 929 γ to (11/2 ⁺) 811: hand assignment
1804.1 ^o 6	$(13/2^{-})$ $(13/2^{-})$		BC EF	J^{π} : 804.2 γ to (9/2 ⁻) 999.9; band assignment.
1862.2 ^h 6	$(15/2^+)$	0.62 ps 14	BC EF	J^{π} : stretched E2 intraband 753 γ to (11/2 ⁺) 1109; band assignment.
1865.4 <mark>8</mark> 7	$(17/2^+)$	1.0 ps 3	BCDEF	J^{π} : E2 961 γ to (13/2 ⁺) 905; band assignment.
100				$T_{1/2}$: from $(\alpha, n\gamma)$. Other: ≥ 0.55 ps from $({}^{29}Si, p2n\gamma)$.
1910.0 ^m 11	$(15/2^{-})$	≥1.2 ps	BCDEF	J^{π} : stretched Q 855 γ to $(11/2)^{-}$ 1056; band assignment.
2212.0^{17}	(15/2)	0.20 mg 8	BC EF	J [*] : 8807 to (11/2) 1555; band assignment. \overline{M}_{i} stratehold E2 854: to (12/2 ⁺) 1471: hand assignment
$2324.4^{\circ} 12$	(17/2)	0.50 ps 8	BC EF	J [*] : stretched (E2) 042e to $(12/2^{-})$ 1506, hand assignment
2739.6° 12	$(17/2^{-})$	0.00 ps 21	BC E	J . succeded (E2) 9427 to (13/2) 1500, band assignment. I^{π} : 936v to (13/2) band assignment.
2791.3^{h} 12	$(19/2^+)$	0.14 ps 4	BCE	I^{π} : stretched E2 929 γ to (15/2 ⁺): hand assignment
2903.9 ^{<i>m</i>} 13	$(19/2^{-})$	0.36 ps 10	BCDE	J^{π} : stretched E2 intraband 994 γ to (15/2 ⁻); band assignment.
2962.8 <mark>8</mark> 8	$(21/2^+)$	0.22 ps 5	BCDEF	J^{π} : stretched E2 1098 γ to (17/2 ⁺); band assignment.
3145.3 ⁿ 12	$(19/2^{-})$		BC E	J^{π} : γ to $(15/2^{-})$; band assignment.
3330.2 ¹ 15	$(21/2^+)$	0.17 ps 5	BC E	J^{π} : E2 γ to (17/2 ⁺); band assignment.
3406.7 10	$(21/2^{+})$	0.00	BCE	J^{n} : stretched Q 1541 γ to (17/2 ⁺) 1865; 443 γ to (21/2 ⁺) 2963.
3495.8° 11	(21/2)	0.38 ps 14	BCDE	J^{π} : γ to (17/2); band assignment.
3/13.74 10	(23/2+)	0.40 ps <i>16</i>	BCE	J [*] : D intraband 306 γ to (21/2 ⁺) 3407; likely J=23/2 member of (ν 5/2[422])(π g _{9/2}) ² band (1996Sm07).
3799.6? [©] 16	(21/2 ⁻)		ΒE	XREF: B(3/52.8). E(level): differs from that in (³¹ P,p2n γ) because, in that reaction, a 1016.0 γ placed in the γ cascade, and here instead a 1060 γ adopted from (³⁰ Si, α 2pn γ) to deexcite this level.
3857.6? 13	$(23/2^{-})$		Е	
3887.3 ^h 16	$(23/2^+)$	0.13 ps 4	BC E	J^{π} : E2 1096 γ to (19/2 ⁺); band assignment.
3977.5 ^j 14	(23/2 ⁻)	<0.55 ps	BCDE	J^{π} : stretched E2 1074 γ to (19/2 ⁻) 2904; from (HI,xn γ) systematics, deexciting γ probably feeds a level with lesser or equal spin.

Continued on next page (footnotes at end of table)

⁸¹Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
4044.0? 17	(23/2 ⁻)		E	
4059.0? ^m 15 4107.2 ⁸ 9	$(23/2^{-})$ $(25/2^{+})$	0.17 ps 4	E BCDE	I^{π} , stretched F2 1144 by to $(21/2^+)$; (M1) y to $(23/2^+)$; hand assignment
4143.6 ^{<i>n</i>} 16	$(23/2^{-})$ $(23/2^{-})$	0.17 ps 7	B E	3 . Succincle 12 111107 to $(21/2)$, (111) 7 to $(25/2)$, build assignment.
4473.3 ⁱ 18	$(25/2^+)$	0.09 ps 3	BC E	J^{π} : stretched E2 1143 γ to (21/2 ⁺); band assignment.
4551.3 ^k 13	$(25/2^{-})$	<0.55 ps	BCDE	J^{π} : stretched E2 1055 γ to (21/2 ⁻); band assignment.
4730.2? ¹ 15	$(25/2^{-})$		E	
4752.8 ^{<i>a</i>} 11 4934 42 ^{<i>o</i>} 19	$(27/2^+)$ $(25/2^-)$	0.21 ps 3	BC E B	J^{π} : stretched E2 1038.6 γ to (23/2 ⁺); D+(Q) γ to (25/2 ⁺).
ч <i>у</i> лчт. 1 <i>у</i>	(23/2)		D	E(level): differs from that in $({}^{31}P,p2n\gamma)$ because, in that reaction, instead of 1016.0 γ from 21/2 ⁻ and 1058.0 from 25/2 ⁻ in the γ cascade 1060 γ and 1134.8 γ (instead of from 29/2 ⁻ for the latter) are adopted here, respectively, from $({}^{30}Si,\alpha 2pn\gamma)$.
4998.1 ^e 14	$(27/2^{-})$		DE	J^{π} : stretched Q 1021 γ to (23/2 ⁻) 3978; 446 γ to (25/2 ⁻) 4551;
5084.4 ^{<i>h</i>} 19	$(27/2^+)$	<0.21 ps	BC E	J^{π} : γ to (23/2 ⁺); band assignment.
5102.5 ^J 17	$(27/2^{-})$		B DE	VDEE: the explored describes this level was seen in (29Si nOne), but was
5174.4 19	(27/2)		DCE	placed differently there.
				Sharp cut off of cascade I γ above this level in (³⁰ Si, α 2pn γ) suggests that
5242 48 12	$(29/2^{+})$	<0.35 ps	BCDF	this level may be isometric (1996Sm07). I^{π} : D α to (27/2 ⁺): α to (25/2 ⁺): hand assignment: $\Lambda \pi$ -no from level
5272.7-12	(2)/2)	<0.55 ps	DCDL	scheme.
5248.6^{n} 19	$(27/2^{-})$		BE	
5204.0^{2k} 18 5705 3 ^k 17	(21/2) $(29/2^{-})$		E R DF	
5752.6^{i} 21	$(29/2^+)$	<0.07 ps	BCE	I^{π} : γ to $(25/2^+)$: hand assignment
6002.1^d 13	$(31/2^+)$	<0.28 ps	BC E	J^{π} : E2 γ to (27/2 ⁺); band assignment.
6068.4? ⁰ 21	$(29/2^{-})$		В	XREF: B(5945.6).
				E(level): differs from that in $({}^{31}P,p2n\gamma)$ because γ cascade from $33/2^-$ to $29/2^-$ to $25/2^-$ to $21/2^-$ of that reaction assigned from $(29/2^-)$ to $(25/2^-)$ to $(21/2^-)$ to $(17/2^-)$ in the adopted dataset.
6114.4? ¹ 18	$(29/2^{-})$		E	
6134.1° <i>17</i> 6265.6 <i>21</i>	(31/2 ⁻)		DE E	J^{π} : 31/2 ⁺ proposed by authors in 1996Sm07. 1181.2 γ to (27/2 ⁺), DCO ratio: 0.76 <i>14</i> (1996Sm07) – possibly contaminated by nearby transition
6357.5 ^j 20	(31/2 ⁻)		B DE	XREF: deexcitation γ also present in (²⁹ Si, p2n γ) but level energy differs due to wrongly placed γ lower in cascade.
6465.0? ^{ch} 21	(31/2 ⁺) ^C		В	
6484.3 ⁸ 13	$(33/2^+)$		B DE	
6520.0 <i>2</i> 21 6792.6 24	(31/2) $(33/2^+)$		E	
$6989.3^{k} 20$	$(33/2^{-})$		B DE	
7135.7 23	$(33/2^+)$		E	
$7184.2^{l} 23$	$(33/2^+)$ $(35/2^-)$		BE	
$7402.1^{\circ}20$ 7448.9 ^d 14	$(35/2^+)$		BE	
7642.1? ¹ 21	$(33/2^{-})$		E	
7760.5 ^j 22	$(35/2^{-})$		B DE	
7860.4 ^g 15	$(37/2^+)$		B DE	
7935.3? ^{ch} 24	$(35/2^+)^{c}$		В	

⁸¹Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
8403.3 ^k 22 8673.7? 25	$(37/2^{-})$ $(37/2^{+})$	B DE E	
8771.5 ⁱ 25	$(37/2^+)$	ΒE	
8822.1 ^e 23	(39/2-)	DE	
9249.5 ^j 25	(39/2 ⁻)	DE	E=9333 in (³¹ P,p2n γ) for J=39/2 band member because, in that reaction, the 1488 γ (which separates the 1581 γ and the 1402 γ) was not included in the relevant γ cascade.
9313.5? ^l 23 9405.4 ⁸ 18	$(37/2^{-})$ $(41/2^{+})$	E B DE	
9475? ^{ch} 3	$(39/2^+)^{c}$	В	
9929 3 $\frac{k}{24}$	$(41/2^{-})$	B DE	
10396.1^{e} 25	$(43/2^{-})$	DE	
10482 ^{<i>i</i>} 3	$(41/2^+)$	Е	
10829 <i>j 3</i>	$(43/2^{-})$	DE	XREF: E(9333); deexciting γ seen, but placed differently, in (³¹ P,p2n γ).
11257.4 <mark>8</mark> 21	$(45/2^+)$	DE	
11614 ^k 3	$(45/2^{-})$	DE	
12114 ^e 3	$(47/2^{-})$	DE	
12376? ^{<i>i</i>} 3	$(45/2^+)$	E	
12525 ^j 3	$(47/2^{-})$	DE	
13427.5 ⁸ 23	$(49/2^+)$	DE	
13486 ^k 3	$(49/2^{-})$	DE	
14010 ^e 3	$(51/2^{-})$	DE	
14424 []] 3	$(51/2^{-})$	D	
15576 ^k 3	$(53/2^{-})$	DE	
15924.5 <mark>8</mark> 25	$(53/2^+)$	D	
16176° <i>3</i>	$(55/2^{-})$	DE	
16794 <i>J</i> 4	$(55/2^{-})$	D	
17956 ^k 4	$(57/2^{-})$	D	
18/20 4	(59/2 ⁻)	DE	
x ^w	J1≈(31/2)	D	Additional information 1.
1215.0+x [@] 10	J1+2	D	
2586.0+x ^w 15	J1+4	D	
$2591.4 + x^{\alpha} 20$	J1+4	D	
$4105.7 + x^{\circ} I/$	J1+6	D	
$4119.4 + X^{-17}$	J1+0	D	
5/85.4 + X = 1/ $5706.7 + x^{a} = 17$	J1+8 J1+8	ע	
$7625.1 \pm x^{(0)}$ 18	$J1 \pm 10$	D D	
$7629.1 \pm x^{a} 20$	J1+10 I1+10	ם ח	
$9613.1 \pm x^{(0)}21$	11+12	D D	
$9714.8 + x^a 2.3$	J1+12 J1+12	D	
$11753.1 + x^{@} 23$	J1+14	- D	
$11918.8 + x^a 25$	J1+14	D	
14047+x [@] 3	J1+16	D	
14288+x ^{<i>a</i>} 3	J1+16	D	
16488+x [@] 3	J1+18	D	
16823+x ^{<i>a</i>} 3	J1+18	D	

⁸¹Sr Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
19052+x [@] 3	J1+20	D	
19519+x ^a 3	J1+20	D	
21713+x [@] 3	J1+22	D	
22364+x? ^a 4	J1+22	D	
24460+x [@] 4	J1+24	D	
y &	J2≈(33/2)	D	Additional information 2.
1646.0+y ^{&} 10	J2+2	D	
3420.0+y ^{&} 15	J2+4	D	
5346.1+y ^{&} 18	J2+6	D	
7430.1+y& 20	J2+8	D	
9670.1+y& 23	J2+10	D	
12068.2+y& 25	J2+12	D	
14608+y& 3	J2+14	D	
17305+y& <i>3</i>	J2+16	D	
z ^b	J3≈(41/2)	D	Additional information 3.
1940.0+z ^b 10	J3+2	D	
4042.1+z ^b 15	J3+4	D	
6302.1+z ^b 18	J3+6	D	
8711.1+z ^b 20	J3+8	D	
11253.2+z ^b 23	J3+10	D	
13852.2+z? ^b 25	J3+12	D	

[†] From a least-squares fit to E γ , allowing 1 keV uncertainty in E γ whenever Δ E is unknown (SD-band levels excluded).

[‡] Values which are assigned without comment are based on band structure deduced in (²⁹Si, α 2p γ) and/or (³¹P,p2n γ) and/or $({}^{30}\text{Si},\alpha 2\text{pn}\gamma)$, combined with γ multipolarity information deduced from measured DCO ratios (SD-band levels).

[#] From DSAM in $(\alpha,n\gamma)$ for E(level)<1400, and from DSAM in $({}^{29}Si,p2n\gamma)$ for E(level) \geq 1400, except as noted.

- [@] Band(A): SD-1 band (2003Le08,1995Ch56,1999Le56). Q(transition)=3.30 +18-16 (1999Le56), 3.08 +16-15 (2003Le08), 3.5 +8-7 (1997De51, reanalysis of data of 1995Ch56). Configuration: $v5^{1}\pi5^{0}$ (2003Le08). Percent population=1.02 (2003Le08), ≈ 1.5 (1995Ch56). Probable $(\pi, \alpha) = (-, +1/2)$ corresponding to configuration: $((\nu \ 1/2[550])^{-1})$. Predicted $\beta_2 = 0.50$ (1995Ch56).
- [&] Band(B): SD-2 band (2003Le08,1995Ch56). Q(transition)=3.30 +27-21 (2003Le08), 3.8 +7-5 (1997De51, reanalyzed data of 1995Ch56). Configuration: $v5^{1}\pi5^{0}$ (2003Le08). Percent population=0.63 (2003Le08), ≈ 1.0 (1995Ch56). Probable (π, α)=(+,-1/2) corresponding to configuration: $((\nu 1/2[431])^{-1})$. Predicted $\beta_2 = 0.55$ (1995Ch56).

^{*a*} Band(C): SD-3 band (2003Le08,1995Ch56). Percent population=0.40 (2003Le08), ≈ 0.6 (1995Ch56). Probable (π, α)=(+,+1/2) corresponding to configuration: $((\nu 5/2[422])^{-1})$. Predicted $\beta_2=0.55$ (1995Ch56). ^b Band(D): SD-4 band (2003Le08,1995Ch56). Percent population=0.29 (2003Le08), ≈ 0.6 (1995Ch56).

^c Assuming the 1288 γ placement given in (³⁰Si, α 2pn γ) and (³¹P,p2n γ); in (¹⁹F,2pn γ), the 1288 γ was placed between the 1381 and 1197 cascading gammas, thereby altering the energy for all J \geq 31/2 members of the 1/2[431] α =-1/2 band. The level is shown here as tentative because the members of the 1540.0γ - 1470.3γ - 1380.6γ cascade, placed above the $27/2^+$ 5083 level in $(^{31}P,p2n\gamma)$ and also present in $(^{30}Si,\alpha 2pn\gamma)$, could not be fitted into a self-consistent level scheme in the $(^{30}Si,\alpha 2pn\gamma)$ study.

^d Band(E): $\alpha = -1/2$, $(\gamma 5/2[422])(\pi g_{9/2})^2$ band. Yrast following crossing of 1-quasineutron band at $\hbar\omega \approx 0.50$ MeV.

^e Band(F): Possible $\pi = -, \alpha = -1/2, 5$ -quasiparticle band. Feeds into $\gamma 5/2[303] \alpha = -1/2$ band. No signature partner is observed. Postulated to contain the simultaneous alignment of a pair of quasineutrons and a pair of quasiprotons (1996Sm07), resulting in increased deformation.

^f Band(g): v 5/2[422], $\alpha = -1/2$ (1996Sm07). See comment on signature partner band.

^g Band(G): ν 5/2[422], α =+1/2 (1996Sm07). Decoupled yrast band.

⁸¹Sr Levels (continued)

- ^h Band(h): $v \frac{1}{2}[431]$, $\alpha = -\frac{1}{2}$ band (1996Sm07). See comment on signature partner band.
- ^{*i*} Band(H): v 1/2[431], $\alpha = +1/2$ band (1996Sm07). Intruder state from d_{5/2} subshell. Band parameters: A=29.2, B=-38, a=+0.059 (J=1/2 through 11/2).
- ^{*j*} Band(i): $\alpha = -1/2$, 3-quasiparticle Eab band (1996Sm07). (π 5/2[303]) + aligned pair of quasiprotons.
- ^k Band(I): $\alpha = +1/2$, 3-quasiparticle Fab band (1996Sm07). (π 5/2[303]) + aligned pair of quasiprotons.
- ^{*l*} Band(J): ν 5/2[303], α =+1/2 band (1996Sm07).
- ^{*m*} Band(j): ν 5/2[303], α =-1/2 band (1996Sm07).
- ^{*n*} Band(k): $v \frac{1}{2[301]}$, $\alpha = -\frac{1}{2}$ band (1996Sm07). See comment on signature partner band.
- ^ο Band(K): ν 1/2[301], α=+1/2 band (1996Sm07). Band parameters: A=46.2, B=-220, a=-0.039 (J=1/2 through 11/2).

$\gamma(^{81}{\rm Sr})$

Additional information 4.

7

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Ι _γ &	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^d	δ^{d}	α^f	Comments
79.20	(5/2) ⁻	79.20 4	100	0.0	1/2-	E2		2.386 34	B(E2)(W.u.)=6.6 +10-8 $\alpha(K)=1.953\ 28;\ \alpha(L)=0.364\ 5;\ \alpha(M)=0.0615\ 9$ $\alpha(N)=0.00697\ 10;\ \alpha(O)=0.0002410\ 34$ Mult.: $\alpha(K)\exp=2.3\ 6\ in\ ^{81}Y\ \varepsilon\ decay$ (which implies $\delta(E2,M1)>2.4$ and $\Delta\pi=n0$); intensity balance at the 79 level in ($\alpha,xn\gamma$) rules out E1 and M1. Compatible with $\gamma(\theta)$ in ($\alpha,xn\gamma$).
89.02	(7/2+)	(9.82)	100	79.20	(5/2)-	[E1]		10.24 14	B(E1)(W.u.)=5.30×10 ⁻⁶ +48-42 α (L)=8.68 <i>12</i> ; α (M)=1.410 <i>20</i> α (N)=0.1498 <i>21</i> ; α (O)=0.00513 <i>7</i> E _{γ} : from level energy difference; γ not observed. Mult.: B(M1)(W.u.)=2.0×10 ⁻⁴ 2 is atypical for this mass region.
119.76	(1/2+)	119.76 4	100	0.0	1/2-	(E1)		0.0597 8	B(E1)(W.u.)=8.3×10 ⁻⁶ +17-12 α (K)=0.0528 7; α (L)=0.00582 8; α (M)=0.000970 14 α (N)=0.0001195 17; α (O)=7.22×10 ⁻⁶ 10 Mult.: authors of 1983Ar16 ((α ,n γ),(α ,3n γ)) from the $\gamma(\theta)$ data consider B(E1)(W.u.)=8.3×10 ⁻⁶ 14 more likely in this mass region than B(M1)(W u.)=5.0×10 ⁻⁴ 9
132.2	(9/2+)	43.2 [@] 4	100	89.02	(7/2+)	M1+E2	-0.08 3	1.89 <i>12</i>	$\alpha(K)\exp=1.5 \ 3 \ (2005Ka39)$ $\alpha(K)=1.64 \ 9; \ \alpha(L)=0.211 \ 29; \ \alpha(M)=0.036 \ 5$ $\alpha(N)=0.0043 \ 5; \ \alpha(O)=0.000246 \ 11$ Mult., δ : D+Q, δ =-0.08 β from (α ,n γ); M1(+E2), δ ≤0.14 from $\alpha(K)\exp$ in ⁸¹ Y ε decay
155.21	3/2-	155.20 10	100	0.0	1/2-	(M1+E2)	+0.1 1	0.051 4	B(R)(exp in 175 decu): B(M1)(W.u.)=0.075 +30-18 $\alpha(K)=0.045$ 4; $\alpha(L)=0.0051$ 5; $\alpha(M)=0.00086$ 9 $\alpha(N)=0.000107$ 11; $\alpha(O)=6.8\times10^{-6}$ 5 Mult.: D(+Q) from $(\alpha,n\gamma)$; adopted $\Delta\pi$ =no.
203.36	(5/2+)	114.34 <i>4</i> 124.16 <i>3</i>	10.3 <i>3</i> 100.0 <i>8</i>	89.02 79.20	$(7/2^+)$ $(5/2)^-$	(E1)		0.0537 8	I _γ : from ⁸¹ Y ε decay. B(E1)(W.u.)=1.5×10 ⁻⁴ +6-3 α (K)=0.0475 7; α (L)=0.00523 7; α (M)=0.000872 12 α (N)=0.0001075 15; α (O)=6.51×10 ⁻⁶ 9 I _γ : from ⁸¹ Y ε decay. Mult.: D in (α ,n γ); adopted $\Delta\pi$ =(yes) and RUL.
220.82	3/2 ⁽⁺⁾	101.05 5	81 5	119.76	(1/2 ⁺)	M1+E2	-0.5 2	0.32 11	$\alpha(K)=0.28 \ 9; \ \alpha(L)=0.039 \ 15; \ \alpha(M)=0.0066 \ 25$ $\alpha(N)=7.8\times10^{-4} \ 29; \ \alpha(O)=3.8\times10^{-5} \ 11$ B(M1)(W.u.)=0.011 +5-3 I_{γ} : weighted average of 82 5 from ⁸¹ Y ε decay and 80 8 from

$ \underbrace{ \begin{array}{cccccccccccccccccccccccccccccccccc$.tinued)	Gammas (cor	ted Levels,	Adop					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(continued)	$\gamma(^{81}\mathrm{Sr})$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Comments	α^f	δ^d	Mult. ^d	$E_f J_f^{\pi}$	Iγ ^{&}	E_{γ}^{\dagger}	\mathbf{J}_i^π	E _i (level)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	(²⁹ Si,p2nγ). Other Iγ: 32 in (α,nγ). δ: -0.5 2 from (α,nγ); abs(δ)<0.5 if B(E2)(W.u.)<300. B(E2)(W.u.)= $3.2 \times 10^2 + 28 - 19$ exceeds RUL=300. α(K)= 0.00887 13; α(L)= 0.000967 14; α(M)= 0.0001617 24	0.01002 15		(E1)	0.0 1/2-	100 7	221.0 [@] 4	3/2 ⁽⁺⁾	220.82
294.9 $(3/2)^{-}$ 294.9 $(3/2)^{-}$ 294.9 (4) 100 0.0 $1/2^{-}$ M1 0.00039 14 $\alpha(K)=0.00830 12; \alpha(L)=0.000919 13; \alpha(M)=0.0001546 22 \alpha(N)=1.940 \times 10^{-5} 28; \alpha(O)=1.257 \times 10^{-6} 18$ 336.22 $(5/2^{+})$ 115.39 6 100 ^d 9 220.82 $3/2^{(+)}$ (M1+E2) -0.2 1 0.128 22 $\alpha(K)=0.112 18; \alpha(L)=0.0135 29; \alpha(M)=0.0023 5 \alpha(N)=0.00028 6; \alpha(O)=1.67 \times 10^{-5} 23$ B(M1)(W.u.)=0.065 $\pm 29 - 17;$ B(E2)(W.u.)= $2.4 \times 10^{2} \pm 35 - 18$ B(E2)(W.u.)= $2.4 \times 10^{2} \pm 35 - 18$ upper bound exceeds RUL= ± 216.7 $(4 < 39)$ 119.76 $(1/2^{+})$ (E2) 0.0605 9 $\alpha(K)=0.0526 8; \alpha(L)=0.00662 10; \alpha(M)=0.001112 17 \alpha(N)=0.000134 21; \alpha(O)=7.27 \times 10^{-6} 11$ $I_{y}:$ limit from ⁸¹ Y ε decay. However, Iy=200 20 in (²⁹ Si,p2 and 125 32 (for possible doublet) in (α,xny). 366.5 $(7/2)^{-}$ 277.5 $(4 - 56 - 5 - 89.02 (7/2^{+}))$ [E1] 0.00527 8 B(E1)(W.u.)= $1.13 \times 10^{-4} \pm 44 - 26 \alpha(K)=0.00467 7; \alpha(L)=0.000508 7; \alpha(M)=8.50 \times 10^{-5} 12 \alpha(N)=1.059 \times 10^{-5} 15; \alpha(O)=6.70 \times 10^{-5} 12 \alpha(N)=0.050 \times 10^{-5} 12 \times 10^{-5} 12 \times 10^{-5} 12 \times 10^{-5} 12 \times 10^{-5} 10$.3 4)	$ α(N)=2.011\times10^{-5} 30; α(O)=1.260\times10^{-6} 19 $ B(E1)(W.u.)=2.6×10 ⁻⁵ +13-6 Mult.: D from (²⁹ Si,p2nγ); pure E1 or highly mixed (δ=-1.3 M1+E2 from (α,nγ); Δπ=(ves) from level scheme.			()				-7-	
336.22 $(5/2^{+})$ 115.39 6 100^{a} 9 220.82 $3/2^{(+)}$ (M1+E2) -0.2 1 0.128 22 ar(K)=0.1013 29; α (M)=0.0023 5 α (K)=0.00028 6; α (O)=1.67×10 ⁻⁵ 23 B(M1)(W.u.)=0.065 $\pm 29-17$; B(E2)(W.u.)=2.4×10 ² $\pm 35-18$ upper bound exceeds RUL= 216.7 ^(a) 4 <39 119.76 (1/2 ⁺) (E2) 0.0605 9 α (K)=0.0023 6 α (L)=0.00662 10; α (M)=0.001112 17 α (N)=0.0001344 21; α (O)=7.27×10 ⁻⁶ 11 I_{γ} : limit from ⁸¹ Y ε decay. However, I γ =200 20 in (²⁹ Si,p2 and 125 32 (for possible doublet) in (α ,xn γ). 366.5 (7/2) ⁻ 277.5 ^(a) 4 56 5 89.02 (7/2 ⁺) [E1] 0.00527 8 B(E1)(W.u.)=1.13×10 ⁻⁴ $\pm 44-26$ α (K)=0.00467 7; α (L)=0.000508 7; α (M)=8.50×10 ⁻⁵ 12 α (N)=1.059×10 ⁻⁵ 15; α (O)=6.70×10 ⁻⁷ 10 I_{γ} : consistent with I γ =51 in (α ,xn γ); however, I γ =150 3 in (³⁰ Si, α 2pn γ).		α (K)=0.00830 <i>12</i> ; α (L)=0.000919 <i>13</i> ; α (M)=0.0001546 <i>22</i> α (N)=1.940×10 ⁻⁵ 28; α (O)=1.257×10 ⁻⁶ <i>18</i>	0.00939 14		M1	0.0 1/2-	100	294.9 [@] 4	(3/2)-	294.9
$216.7^{\textcircled{0}} 4 < 39 \qquad 119.76 \ (1/2^{+}) \ (E2) \qquad \qquad 0.0605 \ 9 \qquad \alpha(K)=0.0526 \ 8; \ \alpha(L)=0.00662 \ 10; \ \alpha(M)=0.001112 \ 17 \\ \alpha(N)=0.0001344 \ 21; \ \alpha(O)=7.27\times10^{-6} \ 11 \\ I_{\gamma}: \ limit \ from \ ^{81}Y \ \varepsilon \ decay. \ However, \ I_{\gamma}=200 \ 20 \ in \ (^{29}Si,p2) \\ and \ 125 \ 32 \ (for \ possible \ doublet) \ in \ (\alpha,xn\gamma). \qquad \qquad$	8 300.	$\alpha(K) = 0.112 \ 18; \ \alpha(L) = 0.0135 \ 29; \ \alpha(M) = 0.0023 \ 5$ $\alpha(N) = 0.00028 \ 6; \ \alpha(O) = 1.67 \times 10^{-5} \ 23$ B(M1)(W.u.)=0.065 +29-17; B(E2)(W.u.)=2.4 \times 10^{2} +35-18 B(E2)(W.u.)=2.4×10 ² +35-18 upper bound exceeds RUL=30	0.128 22	-0.2 1	(M1+E2)	20.82 3/2 ⁽⁺⁾	100 ^{<i>a</i>} 9	115.39 6	(5/2+)	336.22
366.5 $(7/2)^{-}$ 277.5 ^(a) 4 56 5 89.02 $(7/2^{+})$ [E1] 0.00527 8 B(E1)(W.u.)=1.13×10 ⁻⁴ +44-26 $\alpha(K)=0.00467$ 7; $\alpha(L)=0.000508$ 7; $\alpha(M)=8.50\times10^{-5}$ 12 $\alpha(N)=1.059\times10^{-5}$ 15; $\alpha(O)=6.70\times10^{-7}$ 10 I ₂ : consistent with I ₂ =51 in (α ,xn ₂); however, I ₂ =150 3 in (³⁰ Si, α 2pn ₂).	2nγ)	$\alpha(K)=0.0526 \ 8; \ \alpha(L)=0.00662 \ 10; \ \alpha(M)=0.001112 \ 17 \ \alpha(N)=0.0001344 \ 21; \ \alpha(O)=7.27\times10^{-6} \ 11 \ I_{\gamma}: \ limit \ from \ ^{81}Y \ \varepsilon \ decay. \ However, \ I_{\gamma}=200 \ 20 \ in \ (^{29}Si,p2n_{\gamma}) \ and \ 125 \ 32 \ (for \ possible \ doublet) \ in \ (\alpha,xn_{\gamma}).$	0.0605 9		(E2)	19.76 (1/2+)	<39	216.7 [@] 4		
		B(E1)(W.u.)=1.13×10 ⁻⁴ +44-26 α (K)=0.00467 7; α (L)=0.000508 7; α (M)=8.50×10 ⁻⁵ 12 α (N)=1.059×10 ⁻⁵ 15; α (O)=6.70×10 ⁻⁷ 10 I _γ : consistent with I _γ =51 in (α ,xn _γ); however, I _γ =150 3 in (³⁰ Si, α 2pn _γ).	0.00527 8		[E1]	89.02 (7/2 ⁺)	56 5	277.5 [@] 4	(7/2)-	366.5
$287.3 \stackrel{\text{\tiny (M1)}}{=} 4 100 5 79.20 (5/2)^- \text{M1} + \text{E2} +2.2 8 0.0203 21 \text{B}(\text{M1})(\text{W.u.}) = 0.0019 +22-8; \text{B}(\text{E2})(\text{W.u.}) = 137 +49-43 \\ \alpha(\text{K}) = 0.0177 18; \alpha(\text{L}) = 0.00212 23; \alpha(\text{M}) = 0.00036 4 \\ \alpha(\text{N}) = 4.4 \times 10^{-5} 5; \alpha(\text{O}) = 2.52 \times 10^{-6} 24 \text{M1} = 0.00036 4 \text{M1} = 0.00036 $		B(M1)(W.u.)=0.0019 +22-8; B(E2)(W.u.)=137 +49-43 α (K)=0.0177 18; α (L)=0.00212 23; α (M)=0.00036 4 α (N)=4.4×10 ⁻⁵ 5; α (O)=2.52×10 ⁻⁶ 24	0.0203 21	+2.2 8	M1+E2	79.20 (5/2)-	100 5	287.3 [@] 4		
379.25 $5/2^{-}$ 224.3 ^(a) 4 103 13 155.21 3/2 ⁻ M1+E2 +0.13 8 0.0193 9 B(M1)(W.u.)=0.07 +6-3; B(E2)(W.u.)<95 $\alpha(K)=0.0171 8; \alpha(L)=0.00192 11; \alpha(M)=0.000322 18 \alpha(N)=4.03\times10^{-5} 21; \alpha(O)=2.58\times10^{-6} 11$ Other Iy: 94 from (α,xny).		B(M1)(W.u.)=0.07 +6-3; B(E2)(W.u.)<95 α (K)=0.0171 8; α (L)=0.00192 11; α (M)=0.000322 18 α (N)=4.03×10 ⁻⁵ 21; α (O)=2.58×10 ⁻⁶ 11 Other Iy: 94 from (α ,xny).	0.0193 9	+0.13 8	M1+E2	55.21 3/2-	103 <i>13</i>	224.3 [@] 4	5/2-	379.25
$300.0^{\textcircled{0}}4$ 20 $79.20(5/2)^{-}$ I_{γ} : from ($\alpha, xn\gamma$).		I_{γ} : from (α ,xn γ).				79.20 (5/2)-	20	300.0 [@] 4		
$379.4^{\textcircled{0}}4 100 20 0.0 1/2^{-} E2 0.00876 13 B(E2)(W.u.)=1.3\times10^{2} + 11-5 \alpha(K)=0.000896 13; \alpha(M)=0.0001504 22 \alpha(N)=1.852\times10^{-5} 27; \alpha(O)=1.106\times10^{-6} 16$		B(E2)(W.u.)= $1.3 \times 10^2 + 11-5$ α(K)= $0.00770 \ 11$; α(L)= $0.000896 \ 13$; α(M)= $0.0001504 \ 22$ α(N)= $1.852 \times 10^{-5} \ 27$; α(O)= $1.106 \times 10^{-6} \ 16$	0.00876 13		E2	0.0 1/2-	100 20	379.4 [@] 4		
535.8 $(5/2^{-})$ 240.9 $\overset{@}{=}$ 4 100 294.9 $(3/2)^{-}$ (D)					(D)	94.9 (3/2)-	100	240.9 [@] 4	$(5/2^{-})$	535.8
558.2 $7/2^{(+)}$ 221.9 ^(a) 4 15 3 336.22 (5/2 ⁺) I_{γ} : from (²⁹ Si,p2n γ); I γ =26 in (α ,n γ).		I_{γ} : from (²⁹ Si,p2nγ); I_{γ} =26 in (α,nγ).				36.22 (5/2+)	15 <i>3</i>	221.9 [@] 4	$7/2^{(+)}$	558.2
$337.4^{(0)} 4 100 9 220.82 3/2^{(+)} E2 0.01293 19 \alpha(K) = 0.01134 17; \alpha(L) = 0.001336 19; \alpha(M) = 0.0002244 33 \alpha(N) = 2.75 \times 10^{-5} 4; \alpha(O) = 1.619 \times 10^{-6} 24$		α (K)=0.01134 <i>17</i> ; α (L)=0.001336 <i>19</i> ; α (M)=0.0002244 <i>33</i> α (N)=2.75×10 ⁻⁵ <i>4</i> ; α (O)=1.619×10 ⁻⁶ <i>24</i>	0.01293 19		E2	20.82 3/2 ⁽⁺⁾	100 9	337.4 [@] 4		

 ∞

$\gamma(^{81}Sr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_f^{π}	Mult. ^d	δ^d	α^{f}	Comments
611.54	(7/2+)	408.18 6	100.0 24	203.36	(5/2+)	(M1)		0.00424 6	$\alpha(K)=0.00375 5; \alpha(L)=0.000412 6; \alpha(M)=6.92\times10^{-5} 10$ $\alpha(N)=8.70\times10^{-6} 12; \alpha(O)=5.67\times10^{-7} 8$ Ly: from ⁸¹ Y ε decay
		479.3		132.2	(9/2+)				E_{γ} : from level energy difference in ε decay. Weak branch.
632.6	(7/2)-	253.5 [@] 4	32 9	379.25	5/2-	M1		0.01373 20	$\alpha(K)=0.01213 \ 18; \ \alpha(L)=0.001349 \ 20; \ \alpha(M)=0.0002271 \ 33 \ \alpha(M)=0.000271 \$
		477 0 @ 4	100 15	155 01	2/2-				$\alpha(N) = 2.85 \times 10^{-5} 4; \alpha(O) = 1.840 \times 10^{-6} 27$
707.0	$(0/2)^{-}$	477.0 4 220.8 [‡]	100 15	266.5	$\frac{3}{2}$				L weighted average of 2.8, 12 from (²⁹ Si n ² ne) and 10
707.0	(9/2)	559.0	4.4 10	500.5	(7/2)				$4 \text{ from } ({}^{30}\text{Si}, \alpha 2\text{pn}\gamma).$
		627.7 [@] 4	100 6	79.20	(5/2)-	E2		1.90×10 ⁻³ 3	$\alpha(K)=0.001674 \ 24; \ \alpha(L)=0.0001870 \ 26; \alpha(M)=3.14\times10^{-5} \ 4 \alpha(N)=3.01\times10^{-6} \ 6; \ \alpha(O)=2.456\times10^{-7} \ 35$
796 5	$(9/2^+)$	238 1 [‡]	17.3	558.2	$7/2^{(+)}$	(M1)		0.01611.23	$\alpha(\mathbf{K}) = 0.01422 \ 20; \ \alpha(\mathbf{L}) = 0.001585 \ 22; \ \alpha(\mathbf{M}) = 0.000267 \ 4$
170.5	()/2)	200.1	17.5	550.2	,,_	(111)		0.01011 25	$\alpha(N) = 3.34 \times 10^{-5} 5; \alpha(O) = 2.159 \times 10^{-6} 30$
									Mult.: D from $({}^{29}\text{Si},p2n\gamma)$ for intraband γ , $\Delta\pi=$ no from level scheme.
		460.3 [@] 4	100 ⁶ 6	336.22	(5/2+)	(E2)		0.00473 7	α(K)=0.00417 6; α(L)=0.000476 7; α(M)=7.99×10-5 11 α(N)=9.89×10-6 14; α(O)=6.04×10-7 9 Mult.: Q from γ(θ) in (α,nγ) for intraband γ, Δπ=no from level scheme.
810.7	(11/2 ⁺)	678.6 [@] 4	100	132.2	(9/2+)	M1+E2	-0.41 -6+2	1.34×10 ⁻³ 2	B(M1)(W.u.)=0.022 +10-5; B(E2)(W.u.)=10 +6-2 α (K)=0.001183 18; α (L)=0.0001288 20; α (M)=2.164×10 ⁻⁵ 34 α (M)=2.72 10 ⁻⁶ (4 - (2)) 1.772 10 ⁻⁷ 27
004 7	$(12/2^{+})$	<u>م</u> محج	100	122.2	$(0/2^{+})$	БЭ		1.00×10^{-3} 2	$\alpha(N)=2.72\times10^{\circ}4; \alpha(O)=1.73\times10^{\circ}27$
904.7	(15/2)	112.5 4	100	132.2	(9/2)	E2		1.09×10 * 2	$\alpha(K)=0.000962 \ 14; \ \alpha(L)=0.0001061 \ 15; \alpha(M)=1.781\times10^{-5} \ 25$
									$\alpha(N)=2.226\times10^{-6} 31; \alpha(O)=1.418\times10^{-7} 20$
		0							E_{γ} : other: 772.4 5 from (²⁹ Si,p2n γ).
999.9	$(9/2^{-})$	367.2 [@] 4	<14	632.6	$(7/2)^{-}$				other I γ : 19 in (α ,n γ).
		620.8 [@] 4	100 22	379.25	5/2-	(E2)		1.96×10^{-3} 3	α (K)=0.001726 24; α (L)=0.0001930 27;
									$\alpha(M) = 3.24 \times 10^{-5} 5$
									$\alpha(\mathbf{N})=4.05\times10^{\circ}$ 0; $\alpha(\mathbf{O})=2.55\times10^{\circ}$ 4 Mult : O from $\gamma(\theta)$ in $(\alpha,\mathbf{n}\gamma)$ for intraband γ . $\Lambda\pi=\mathbf{n}\alpha$
									from level scheme.
1055.4	$(11/2)^{-}$	347.7	<2.4	707.0	(9/2)-	(M1)		0.00625 9	$\alpha(K)=0.00553 \ 8; \ \alpha(L)=0.000610 \ 9; \ \alpha(M)=0.0001025 \ 14$

9

						Adoj	pted Levels, Gam	mas (continued)
							$\gamma(^{81}\mathrm{Sr})$ (con	tinued)
E _i (level)	J_i^π	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_f^{π}	Mult. ^d	α^f	Comments
								α (N)=1.287×10 ⁻⁵ <i>18</i> ; α (O)=8.36×10 ⁻⁷ <i>12</i> E _{γ} : from (³¹ P,p2n γ). Mult.: D from (²⁹ Si.p2n γ) for intraband γ . $\Delta \pi$ =no from level scheme.
1055.4	(11/2)-	689.1 [@] 4	100 5	366.5	(7/2)-	E2	1.47×10 ⁻³ 2	$\alpha(K)=0.001297 \ 18; \ \alpha(L)=0.0001441 \ 20; \ \alpha(M)=2.418\times10^{-5} \ 34 \ \alpha(N)=3.02\times10^{-6} \ 4; \ \alpha(O)=1.908\times10^{-7} \ 27$
1109.2	(11/2+)	311.9 [‡]	<4.1	796.5	(9/2+)	(M1)	0.00817 11	α (K)=0.00722 <i>10</i> ; α (L)=0.000799 <i>11</i> ; α (M)=0.0001343 <i>19</i> α (N)=1.686×10 ⁻⁵ <i>24</i> ; α (O)=1.093×10 ⁻⁶ <i>15</i> Mult : D from (²⁹ Si p2ny) for intraband γ $\Delta \pi$ =no from level scheme
		551.1 [@] 4	100 7	558.2	7/2 ⁽⁺⁾	(E2)	0.00275 4	$ α(K) = 0.002425 34; α(L) = 0.000273 4; α(M) = 4.59 \times 10^{-5} 7 α(N) = 5.70 \times 10^{-6} 8; α(O) = 3.54 \times 10^{-7} 5 Μult.: O from (29Si.p2nγ) for intraband γ, Δπ=no from level scheme. $
1332.6	$(11/2^{-})$	333.2 [‡]		999.9	$(9/2^{-})$			x = (, r =,) = = = = = = = , , = = = = = = = = =
		700.0 [@] 4	С	632.6	$(7/2)^{-}$			
1470.5	$(13/2^+)$	361.1 [‡]		1109.2	$(11/2^+)$			
		674.0 [@] 4	С	796.5	(9/2+)	(E2)	1.56×10 ⁻³ 2	B(E2)(W.u.)<260 α (K)=0.001377 <i>19</i> ; α (L)=0.0001532 <i>22</i> ; α (M)=2.57×10 ⁻⁵ <i>4</i> α (N)=3.21×10 ⁻⁶ <i>5</i> ; α (O)=2.024×10 ⁻⁷ <i>29</i> Mult.: O from (²⁹ Si.p2nγ) for intraband γ , $\Delta \pi$ =no from level scheme.
1505.6	(13/2 ⁻)	798.6 [@] 4	100	707.0	(9/2) ⁻	(E2)	9.99×10 ⁻⁴ 14	$\alpha(K)=0.000883 \ 12; \ \alpha(L)=9.73\times10^{-5} \ 14; \ \alpha(M)=1.633\times10^{-5} \ 23 \ \alpha(N)=2.041\times10^{-6} \ 29; \ \alpha(O)=1.303\times10^{-7} \ 18 \ Mult.; \ O \ from \ (^{29}Si,p2n\gamma) \ for \ intraband \ \gamma, \ \Delta\pi=no \ from \ level \ scheme.$
1739.8	(15/2 ⁺)	835.0 [@] 4	100	904.7	(13/2 ⁺)	M1+E2	0.00086 4	$\alpha(K)=0.000760 \ 31; \ \alpha(L)=8.3\times10^{-5} \ 4; \ \alpha(M)=1.39\times10^{-5} \ 7 \ \alpha(N)=1.74\times10^{-6} \ 8; \ \alpha(O)=1.13\times10^{-7} \ 4 \ I_{\gamma}: \text{ from } (\alpha, \text{xn}\gamma).$
		929.3 [@] 4	40	810.7	$(11/2^+)$			I _γ : from (α ,xn γ). May include contribution from 929.1 γ which deexcites the 2791 level in other (HI,xn γ) reactions.
1804.1	$(13/2^{-})$	804.2 [@] 4	100	999.9	(9/2 ⁻)			
1862.2	(15/2+)	753.0 [@] 4	100	1109.2	(11/2+)	E2	1.16×10 ⁻³ 2	B(E2)(W.u.)=1.8×10 ² +5-3 α (K)=0.001027 <i>14</i> ; α (L)=0.0001135 <i>16</i> ; α (M)=1.904×10 ⁻⁵ 27 α (N)=2.378×10 ⁻⁶ 33; α (O)=1.513×10 ⁻⁷ 2 <i>1</i> Mult.: Q from (²⁹ Si,p2n γ); not M2 from RUL.
1865.4	(17/2 ⁺)	960.7 4	100	904.7	(13/2 ⁺)	E2	6.36×10 ⁻⁴ 9	B(E2)(W.u.)=33 +14-8 α (K)=0.000563 8; α (L)=6.14×10 ⁻⁵ 9; α (M)=1.031×10 ⁻⁵ 14 α (N)=1.291×10 ⁻⁶ 18; α (O)=8.33×10 ⁻⁸ 12 E _{γ} : weighted average of 960.6 4 from (α ,xn γ) and 960.9 5 from (²⁹ Si,p2n γ).

From ENSDF

 $^{81}_{38}{
m Sr}_{43}{
m -10}$

					Ado	pted Levels, Gam	amas (continued)
						$\gamma(^{81}\mathrm{Sr})$ (con	tinued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Ιγ ^{&}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^d	α^f	Comments
1910.0	(15/2 ⁻)	855	100	1055.4 (11/2)-	(E2)	8.42×10 ⁻⁴ 12	$\alpha(K)=0.000745 \ 10; \ \alpha(L)=8.18\times10^{-5} \ 11; \ \alpha(M)=1.372\times10^{-5} \ 19 \ \alpha(N)=1.717\times10^{-6} \ 24; \ \alpha(O)=1.100\times10^{-7} \ 15 \ E_{\gamma}: \ from \ (^{29}Si, \alpha 2p\gamma). \ E=855.3 \ 4 \ for \ doublet \ in \ (\alpha,xn\gamma); \ E_{\gamma}=854.5 \ in \ (^{30}Si, \alpha 2pn\gamma)$
							Mult.: Q from (²⁹ Si,p2n γ) for intraband γ , $\Delta \pi$ =no from level scheme.
2212.6	(15/2-)	880.0 [@] 4	100	1332.6 (11/2-)			
2324.4	(17/2+)	853.9 [‡]	100	1470.5 (13/2 ⁺)	E2	8.45×10 ⁻⁴ 12	B(E2)(W.u.)= $2.0 \times 10^2 + 8 - 4$ α (K)= $0.000747 \ 10; \ \alpha$ (L)= $8.20 \times 10^{-5} \ 11; \ \alpha$ (M)= $1.377 \times 10^{-5} \ 19$ α (N)= $1.722 \times 10^{-6} \ 24; \ \alpha$ (O)= $1.104 \times 10^{-7} \ 15$ Mult.: Q from (²⁹ Si,p2ny); not M2 from RUL.
2447.7	(17/2 ⁻)	942.0 [@] 4	100	1505.6 (13/2 ⁻)	(E2)	6.66×10 ⁻⁴ 9	B(E2)(W.u.)=61 +33-16 $\alpha(K)=0.000589 \ 8; \ \alpha(L)=6.44\times10^{-5} \ 9; \ \alpha(M)=1.081\times10^{-5} \ 15$ $\alpha(N)=1.353\times10^{-6} \ 19; \ \alpha(O)=8.72\times10^{-8} \ 12$ Mult.: (Q) from (²⁹ Si,p2n γ); not M2 from RUL.
2739.6	$(17/2^{-})$	935.5 [‡]	100	1804.1 (13/2 ⁻)			
2791.3	(19/2+)	929.1 [‡]	100	1862.2 (15/2 ⁺)	E2	6.88×10 ⁻⁴ 10	α (K)=0.000609 9; α (L)=6.66×10 ⁻⁵ 9; α (M)=1.117×10 ⁻⁵ 16 α (N)=1.399×10 ⁻⁶ 20; α (O)=9.01×10 ⁻⁸ 13 A comparable 929.3 γ placed from 1740 level in (α ,n γ). Mult.: Q from (²⁹ Si,p2n γ). For (E2), BE2W=2.8E2 +11-6 upper bound exceeds RUL=300.
2903.9	(19/2 ⁻)	994.3	100	1910.0 (15/2 ⁻)	E2	5.86×10 ⁻⁴ 8	B(E2)(W.u.)=78 +29-17 α (K)=0.000519 7; α (L)=5.66×10 ⁻⁵ 8; α (M)=9.50×10 ⁻⁶ 13 α (N)=1.190×10 ⁻⁶ 17; α (O)=7.69×10 ⁻⁸ 11 E _{γ} : average of 993.5 (³¹ P,p2n γ), 993.8 (³⁰ Si, α 2pn γ), and 995.6 (²⁹ Si, α 2p γ). Mult : O from (²⁹ Si,p2n γ) for intraband γ . M2 rule out by RUL.
2962.8	(21/2+)	1097.5 4	100	1865.4 (17/2 ⁺)	E2	4.68×10 ⁻⁴ 7	B(E2)(W.u.)=78 +23-15 α (K)=0.000415 6; α (L)=4.50×10 ⁻⁵ 6; α (M)=7.55×10 ⁻⁶ 11 α (N)=9.47×10 ⁻⁷ 13; α (O)=6.14×10 ⁻⁸ 9 E _{γ} : from (α ,xn γ). Other: 1097.5 5 from (²⁹ Si,p2n γ). Mult.: Q from (²⁹ Si,p2n γ); not M2 from RUL.
3145.3	$(19/2^{-})$	932.6 [‡]	100	2212.6 (15/2-)			
3330.2	(21/2+)	1005.8 [‡]	100	2324.4 (17/2 ⁺)	E2	5.71×10 ⁻⁴ 8	B(E2)(W.u.)= $1.6 \times 10^2 + 7-4$ α (K)= 0.000505 7; α (L)= 5.51×10^{-5} 8; α (M)= 9.24×10^{-6} 13 α (N)= 1.158×10^{-6} 16; α (O)= 7.49×10^{-8} 10 Mult.: Q from (²⁹ Si,p2n γ); not M2 from RUL.
3406.7	$(21/2^+)$	443.3 [‡]		2962.8 (21/2 ⁺)			-
		1541 [‡]	С	1865.4 (17/2 ⁺)	(E2)	3.29×10 ⁻⁴ 5	α (K)=0.0002032 28; α (L)=2.182×10 ⁻⁵ 31; α (M)=3.66×10 ⁻⁶ 5

						Adopted	Levels, C	ammas (contin	ued)
							$\gamma(^{81}\text{Sr})$ ((continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ιγ ^{&}	E_f	\mathbf{J}_{f}^{π}	Mult. ^d	δ ^d	α^f	Comments
3495.8	(21/2)	1047.7*	100	2447.7	(17/2)	[E2]		5.20×10 + 7	$\begin{aligned} \alpha(\mathbf{K}) &= 0.000460 \ 6; \ \alpha(\mathbf{L}) &= 5.01 \times 10^{-5} \ 7; \ \alpha(\mathbf{M}) &= 8.40 \times 10^{-6} \ 12 \\ \alpha(\mathbf{N}) &= 1.053 \times 10^{-6} \ 15; \ \alpha(\mathbf{O}) &= 6.82 \times 10^{-8} \ 10 \\ \mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) &= 57 + 33 - 15 \end{aligned}$
3713.7	(23/2+)	306.2 [‡]	11.7 ^b 9	3406.7	(21/2 ⁺)	(M1)		0.00855 12	B(M1)(W.u.)=0.20 +13-6 α (K)=0.00756 11; α (L)=0.000836 12; α (M)=0.0001407 20 α (N)=1.765×10 ⁻⁵ 25; α (O)=1.145×10 ⁻⁶ 16 Mult.: D from (²⁹ Si,p2n γ); $\Delta \pi$ =(no) from level scheme. Other I γ : I(306 γ):I(751 γ)=25 6:100 21 in (²⁹ Si,p2n γ).
		750.5 [‡]	100 ^b 5	2962.8	(21/2 ⁺)	(M1+E2)	0.3 1	1.05×10 ⁻³ 2	B(M1)(W.u.)=0.11 +7-3; B(E2)(W.u.)=21 +22-12 α (K)=0.000932 14; α (L)=0.0001011 16; α (M)=1.698×10 ⁻⁵ 27 α (N)=2.135×10 ⁻⁶ 34; α (O)=1.398×10 ⁻⁷ 21 Mult.,δ: D+Q from (²⁹ Si,p2nγ); Δ π=(no) from level scheme.
3799.6?	$(21/2^{-})$	1060 ^{‡g}	100	2739.6	$(17/2^{-})$				
3857.6?	$(23/2^{-})$	953.4 ^{‡g}	100	2903.9	(19/2 ⁻)				
3887.3	(23/2+)	1096.0 [‡]	100	2791.3	(19/2+)	E2		4.70×10 ⁻⁴ 7	B(E2)(W.u.)= $1.3 \times 10^2 + 6-3$ α (K)= $0.000416 6$; α (L)= $4.52 \times 10^{-5} 6$; α (M)= $7.58 \times 10^{-6} 11$ α (N)= $9.50 \times 10^{-7} 13$; α (O)= $6.16 \times 10^{-8} 9$ Mult.: Q from (²⁹ Si,p2n γ); not M2 from RUL.
3977.5	(23/2 ⁻)	1074 [#] 1	100	2903.9	(19/2 ⁻)	E2		4.91×10 ⁻⁴ 7	α (K)=0.000435 6; α (L)=4.73×10 ⁻⁵ 7; α (M)=7.94×10 ⁻⁶ 11 α (N)=9.95×10 ⁻⁷ 14; α (O)=6.45×10 ⁻⁸ 9 Mult.: Q from (²⁹ Si,p2n γ); not M2 from RUL.
4044.0?	$(23/2^{-})$	899.2 ^{‡8}	100	3145.3	$(19/2^{-})$				
4059.0?	$(23/2^{-})$	1155 ^{‡g}	100	2903.9	$(19/2^{-})$				
4107.2	(25/2+)	392.7‡	13.6 ^b 6	3713.7	(23/2+)	(M1)		0.00465 7	B(M1)(W.u.)=0.26 +8-5 α (K)=0.00412 6; α (L)=0.000452 6; α (M)=7.61×10 ⁻⁵ 11 α (N)=9.55×10 ⁻⁶ 13; α (O)=6.22×10 ⁻⁷ 9 other I γ : 10.6 28 from (²⁹ Si,p2n γ). Mult.: D from (²⁹ Si,p2n γ); $\Delta\pi$ =(no) from level scheme.
		1144.6 [#] 5	100 ^b 5	2962.8	(21/2 ⁺)	E2		4.29×10 ⁻⁴ 6	B(E2)(W.u.)=72 +22-14 α (K)=0.000378 5; α (L)=4.09×10 ⁻⁵ 6; α (M)=6.87×10 ⁻⁶ 10 α (N)=8.62×10 ⁻⁷ 12; α (O)=5.60×10 ⁻⁸ 8; α (IPF)=2.47×10 ⁻⁶ 5 Mult.: Q from (²⁹ Si,p2n γ); not M2 from RUL.

12

	Adopted Levels, Gammas (continued)								
$\gamma(^{81}Sr)$ (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ &	E_f	J_f^π	Mult. ^d	δ ^d	α^{f}	Comments
4143.6	$(23/2^{-})$	998.3 [‡]	100	3145.3	$(19/2^{-})$				
4473.3	(25/2+)	1143.1‡	100	3330.2	(21/2 ⁺)	E2		4.30×10 ⁻⁴ 6	B(E2)(W.u.)=1.6×10 ² +8-4 α (K)=0.000379 5; α (L)=4.11×10 ⁻⁵ 6; α (M)=6.89×10 ⁻⁶ 10 α (N)=8.65×10 ⁻⁷ 12; α (O)=5.62×10 ⁻⁸ 8; α (IPF)=2.376×10 ⁻⁶ 33 Mult.: Q from (²⁹ Si,p2n γ); not M2 from RUL.
4551.3	(25/2 ⁻)	1055 [#] 1	100	3495.8	(21/2 ⁻)	E2		5.12×10 ⁻⁴ 7	α (K)=0.000453 6; α (L)=4.93×10 ⁻⁵ 7; α (M)=8.27×10 ⁻⁶ 12 α (N)=1.037×10 ⁻⁶ 15; α (O)=6.71×10 ⁻⁸ 10 Mult.: Q from DCO in (³⁰ Si, α 2pn γ); not M2 from RUL.
4730.2?	$(25/2^{-})$	1234.1 ^{∓8}	100	3495.8	$(21/2^{-})$				
4752.8	(27/2 ⁺)	645.3 [‡]	100 ⁶ 4	4107.2	(25/2 ⁺)	(M1+E2)	0.1 1	1.46×10 ⁻³ 2	B(M1)(W.u.)=0.216 +49-40 α (K)=0.001296 20; α (L)=0.0001407 22; α (M)=2.36×10 ⁻⁵ 4
									$\alpha(N)=2.97\times10^{-6}$ 5; $\alpha(O)=1.948\times10^{-7}$ 29
									Mult., δ : D(+Q) from (²⁹ Si,p2n γ); intraband transition.
		1038.6 [‡]	79 ^b 4	3713.7	(23/2+)	E2		5.30×10 ⁻⁴ 7	B(E2)(W.u.)=47 +8-6 α (K)=0.000470 7; α (L)=5.11×10 ⁻⁵ 7; α (M)=8.57×10 ⁻⁶ 12 α (N)=1.075×10 ⁻⁶ 15; α (O)=6.96×10 ⁻⁸ 10 Mult.: O from (²⁹ Si.p2ny); not M2 from RUL.
4934.4?	$(25/2^{-})$	1134.8 <mark>8</mark>	100	3799.6?	$(21/2^{-})$				E_{γ} : from (³¹ P,p2n γ).
4998.1	$(27/2^{-})$	446.4 [‡]	37 <mark>b</mark> 4	4551.3	$(25/2^{-})$				
		954.1 [‡]	7.7 <mark>b</mark> 13	4044.0?	$(23/2^{-})$				
		1021 [#] 1	100 ^b 4	3977.5	(23/2 ⁻)	(E2)		5.52×10 ⁻⁴ 8	α(K)=0.000488 7; α(L)=5.32×10-5 8; α(M)=8.92×10-6 13 α(N)=1.118×10-6 16; α(O)=7.23×10-8 10 Mult.: from DCO ratio in (30Si,α2pnγ) for intraband γ; Δπ=no from level scheme.
		1140.4 [‡] 8		3857.6?	$(23/2^{-})$				
5084.4	(27/2 ⁺)	1197.1 [‡]	100	3887.3	(23/2 ⁺)				 Other Eγ: 1194 from (²⁹Si,p2nγ). Mult.: DCO from (²⁹Si,p2nγ) is higher than expected for O transition.
5102.5	(27/2 ⁻)	1125 [#] 1	100	3977.5	(23/2 ⁻)	(E2)		4.44×10 ⁻⁴ 6	
5174.4	$(27/2^+)$	1287.1 [‡]	100	3887.3	$(23/2^+)$	(Q)			Mult.: from DCO ratio in $({}^{30}Si,\alpha 2pn\gamma)$.
5242.4	$(29/2^+)$	489.3 [‡]	100 38	4752.8	$(27/2^+)$	(M1)		0.00276 4	$\alpha(K)=0.002443 \ 34; \ \alpha(L)=0.000267 \ 4; \ \alpha(M)=4.49\times10^{-5} \ 6$

13

From ENSDF

 ${}^{81}_{38}{
m Sr}_{43}{
m -}13$

						Adopted	Levels, Gamma	s (continued)
							$\gamma(^{81}\text{Sr})$ (continu	ued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ ^{&}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^d	α^f	Comments
								$\alpha(N)=5.64\times10^{-6} 8; \alpha(O)=3.68\times10^{-7} 5$
		.#						Mult.: D intraband γ from (²⁹ Si,p2n γ).
5242.4	$(29/2^+)$	1136 [#] 1	<25	4107.2	$(25/2^+)$			Other I γ : 159 15 in (³⁰ Si, α 2pn γ) for possibly contaminated γ .
5248.6	$(27/2^{-})$	1105+	100	4143.6	$(23/2^{-})$			
5264.0?	$(27/2^{-})$	1205+8	100	4059.0?	$(23/2^{-})$		1 1 1 1	
5705.3	(29/2 ⁻)	1154" 1	100	4551.3	(25/2 ⁻)	(E2)	4.22×10 ⁻⁺ 6	$ α(K)=0.000371 S; α(L)=4.02×10^{-5} G; α(M)=6.75×10^{-6} 10 $ $ α(N)=8.47×10^{-7} 12; α(O)=5.50×10^{-8} 8; α(IPF)=3.12×10^{-6} 9 $ Mult.: (Q) from DCO ratio in (³⁰ Si,α2pnγ) for intraband γ; Δπ=no from level scheme.
5752.6	(29/2+)	1279.3 [‡]	100	4473.3	(25/2+)	(E2)	3.58×10 ⁻⁴ 5	α(K)=0.000297 4; α(L)=3.21×10-5 4; α(M)=5.38×10-6 8 α(N)=6.76×10-7 9; α(O)=4.41×10-8 6; α(IPF)=2.271×10-5 32 Mult.: (Q) from DCO ratio in (30Si,α2pnγ) for intraband γ; Δπ=no from level scheme.
6002.1	$(31/2^+)$	759.9 [‡]	14 ^b 5	5242.4	$(29/2^+)$	(D)		Mult.: from DCO ratio in $({}^{30}\text{Si},\alpha 2\text{pn}\gamma)$.
		1249.0 [‡]	100 ^{bc} 11	4752.8	(27/2 ⁺)	E2	3.69×10 ⁻⁴ 5	$\alpha(K)=0.000313 4; \alpha(L)=3.38\times10^{-5} 5; \alpha(M)=5.67\times10^{-6} 8$ $\alpha(N)=7.12\times10^{-7} 10; \alpha(O)=4.64\times10^{-8} 6; \alpha(IPF)=1.643\times10^{-5} 23$ Mult.: O from (²⁹ Si,p2n γ) for intraband transition; M2 ruled out by RUL.
6068.4?	$(29/2^{-})$	1134.0 <mark>8</mark>	100	4934.4?	$(25/2^{-})$			E_{γ} : from (³¹ P,p2n γ).
6114.4?	$(29/2^{-})$	1384.2 [‡] 8	100	4730.2?	$(25/2^{-})$, –
6134.1	(31/2 ⁻)	1136 [#] 1	100	4998.1	(27/2 ⁻)	(E2)	4.36×10 ⁻⁴ 6	$ α(K)=0.000384 5; α(L)=4.16×10^{-5} 6; α(M)=6.99×10^{-6} 10 α(N)=8.77×10^{-7} 12; α(O)=5.69×10^{-8} 8; α(IPF)=1.97×10^{-6} 6 Eγ: other: 1134.3 (30Si,α2pnγ). Mult.: from DCO ratio in (30Si,α2pnγ) for intraband γ; Δπ=no from level scheme.$
6265.6		1181.2 [‡]	100	5084.4	$(27/2^{+})$			
6357.5	(31/2 ⁻)	1255 [#] 1	100	5102.5	(27/2 ⁻)	(E2)	3.67×10 ⁻⁴ 5	α(K)=0.000310 4; α(L)=3.34×10-5 5; α(M)=5.61×10-6 8 α(N)=7.05×10-7 10; α(O)=4.59×10-8 6; α(IPF)=1.762×10-5 32 Mult.: (Q) from DCO ratio in (30Si,α2pnγ) for intraband γ; Δπ=no from level scheme.
6465.0?	$(31/2^+)$	1380.6 <mark>8</mark>	100	5084.4	$(27/2^+)$			E_{γ} : from (³¹ P,p2n γ).
6484.3	(33/2+)	482.1 [‡] 1242 [#] 1	40.0 ^b 19 100 ^b 12	6002.1 5242.4	(31/2 ⁺) (29/2 ⁺)	D		Mult.: from DCO ratio in $({}^{30}\text{Si},\alpha 2\text{pn}\gamma)$.
6520.0?	$(31/2^{-})$	1256 ^{‡g}	100	5264.0?	$(27/2^{-})$			
6792.6	$(33/2^+)$	527 [‡]	100	6265.6				
6989.3	$(33/2^{-})$	1284 [#] 1	100	5705.3	$(29/2^{-})$			
7135.7	$(33/2^+)$	1383 [‡]	100	5752.6	$(29/2^+)$			

14

$\gamma(^{81}Sr)$ (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	Iγ ^{&}	\mathbf{E}_{f}	J_f^π	Mult. ^d	α^{f}	Comments
7184.2	$(33/2^+)$	1431.5 [‡]	100	5752.6	$(29/2^+)$			
7402.1	(35/2 ⁻)	1268 [#] 1	100	6134.1	(31/2 ⁻)	(E2)	3.62×10 ⁻⁴ 5	α(K)=0.000303 4; α(L)=3.27×10-5 5; α(M)=5.49×10-6 8 α(N)=6.89×10-7 10; α(O)=4.49×10-8 6; α(IPF)=2.030×10-5 35 Mult.: from DCO ratio in (30Si,α2pnγ) for intraband γ; Δπ=no from level scheme.
7448.9	$(35/2^+)$	964.9 [‡]	75 <mark>b</mark> 6	6484.3	$(33/2^+)$			
		1446.6 [‡]	100 ^b 12	6002.1	(31/2+)	(E2)	3.26×10 ⁻⁴ 5	$ α(K)=0.0002305 32; α(L)=2.480×10^{-5} 35; α(M)=4.16×10^{-6} 6 $ $α(N)=5.23×10^{-7} 7; α(O)=3.42×10^{-8} 5; α(IPF)=6.58×10^{-5} 9$ Mult.: from DCO ratio in (³⁰ Si,α2pnγ) for intraband γ; Δπ=no from level scheme.
7642.1?	$(33/2^{-})$	1527.7 ^{‡g}	100	6114.4?	$(29/2^{-})$			
7760.5	(35/2-)	1403 [#] I	100	6357.5	(31/2 ⁻)	(E2)	3.30×10 ⁻⁴ 5	$ α(K)=0.0002453 35; α(L)=2.64×10^{-5} 4; α(M)=4.43×10^{-6} 6 $ $α(N)=5.57×10^{-7} 8; α(O)=3.64×10^{-8} 5; α(IPF)=5.27×10^{-5} 8$ Mult.: from DCO ratio in (³⁰ Si,α2pnγ) for intraband γ; Δπ=no from level scheme.
7860.4	$(37/2^+)$	411.6 [‡]	12.0 <mark>b</mark> 13	7448.9	$(35/2^+)$	D		Mult.: from DCO ratio in $({}^{30}\text{Si},\alpha 2\text{pn}\gamma)$.
		1376 [#] 1	100 ^b 7	6484.3	(33/2+)	(E2)	3.34×10 ⁻⁴ 5	$ α(K)=0.000255 4; α(L)=2.75×10^{-5} 4; α(M)=4.61×10^{-6} 6 α(N)=5.80×10^{-7} 8; α(O)=3.79×10^{-8} 5; α(IPF)=4.55×10^{-5} 7 Mult.: (Q) from DCO ratio in (30Si,α2pnγ) for intraband γ; Δπ=no from level scheme.$
7935.3?	$(35/2^+)$	1470.3 <mark>8</mark>	100	6465.0?	$(31/2^+)$			E_{γ} : from (³¹ P,p2n γ).
8403.3	$(37/2^{-})$	1414 [#] 1	100	6989.3	$(33/2^{-})$			Other E γ : 1416.4 in (³⁰ Si, α 2pn γ).
8673.7?	$(37/2^+)$	1538 ^{‡g}	100	7135.7	$(33/2^+)$			
8771.5	(37/2 ⁺)	1587.3 [‡]	100	7184.2	(33/2 ⁺)	(E2) ^e	3.35×10 ⁻⁴ 5	α (K)=0.0001917 27; α (L)=2.057×10 ⁻⁵ 29; α (M)=3.45×10 ⁻⁶ 5 α (N)=4.34×10 ⁻⁷ 6; α (O)=2.85×10 ⁻⁸ 4; α (IPF)=0.0001193 17 Mult.: from DCO ratio in (³⁰ Si, α 2pn γ) for intraband γ .
8822.1	(39/2 ⁻)	1420 [#] 1	100	7402.1	(35/2 ⁻)	(E2) ^e	3.28×10 ⁻⁴ 5	$\alpha(K)=0.0002394 \ 34; \ \alpha(L)=2.58\times10^{-5} \ 4; \ \alpha(M)=4.32\times10^{-6} \ 6 \ \alpha(N)=5.43\times10^{-7} \ 8; \ \alpha(O)=3.55\times10^{-8} \ 5; \ \alpha(IPF)=5.76\times10^{-5} \ 9 \ Mult.; from DCO ratio in ({}^{30}Si.\alpha2pn\gamma) for intraband \ \gamma.$
9249.5	(39/2 ⁻)	1489 [#] 1	100	7760.5	(35/2 ⁻)	(E2) ^e	3.26×10 ⁻⁴ 5	$\alpha(\text{K})=0.0002175 \ 31; \ \alpha(\text{L})=2.338\times10^{-5} \ 33; \ \alpha(\text{M})=3.92\times10^{-6} \ 6 \ \alpha(\text{N})=4.93\times10^{-7} \ 7; \ \alpha(\text{O})=3.23\times10^{-8} \ 5; \ \alpha(\text{IPF})=8.03\times10^{-5} \ 12 \ \text{Mult.:} \ (\text{Q}) \ \text{from DCO ratio in } ({}^{30}\text{Si},\alpha2\text{pn}\gamma) \ \text{for intraband} \ \gamma.$
9313.5?	(37/2-)	1671.4 [‡] 8	100	7642.1?	(33/2-)			
9405.4	(41/2 ⁺)	1545 [#] 1	100	7860.4	(37/2 ⁺)	(E2) ^e	3.30×10 ⁻⁴ 5	$\alpha(K)=0.0002021\ 28;\ \alpha(L)=2.171\times10^{-5}\ 31;\ \alpha(M)=3.64\times10^{-6}\ 5$ $\alpha(N)=4.58\times10^{-7}\ 6;\ \alpha(O)=3.00\times10^{-8}\ 4;\ \alpha(IPF)=0.0001018\ 15$ Mult : from DCO ratio in ($^{30}Si\ \alpha^2$ pny) for intrahand γ
9475?	$(39/2^+)$	1540.0 ^g	100	7935.3?	$(35/2^+)$			E_{γ} : from (³¹ P,p2n γ).

15

	Adopted Levels, Gammas (continued)							
						$\gamma(^{81}Sr$) (continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ ^{&}	E_f	J_f^π	Mult. ^d	α^f	Comments
9929.3	(41/2 ⁻)	1526 [#] 1	100	8403.3	(37/2 ⁻)	(E2) ^e	3.28×10 ⁻⁴ 5	α (K)=0.0002072 29; α (L)=2.225×10 ⁻⁵ 31; α (M)=3.73×10 ⁻⁶ 5 α (N)=4.69×10 ⁻⁷ 7; α (O)=3.08×10 ⁻⁸ 4; α (IPF)=9.42×10 ⁻⁵ 14 Mult.: (Q) from DCO ratio in (³⁰ Si, α 2pn γ) for intraband γ .
10396.1	(43/2 ⁻)	1574 [#] 1	100	8822.1	(39/2 ⁻)	(E2) ^e	3.33×10 ⁻⁴ 5	α (K)=0.0001949 27; α (L)=2.091×10 ⁻⁵ 29; α (M)=3.51×10 ⁻⁶ 5 α (N)=4.41×10 ⁻⁷ 6; α (O)=2.89×10 ⁻⁸ 4; α (IPF)=0.0001137 16 Mult.: from DCO ratio in (³⁰ Si, α 2pn γ) for intraband γ .
10482	$(41/2^+)$	1711 [‡]	100	8771.5	$(37/2^+)$			
10829	(43/2 ⁻)	1579 [#] 1	100	9249.5	(39/2 ⁻)	(E2) ^e	3.34×10 ⁻⁴ 5	α (K)=0.0001936 27; α (L)=2.078×10 ⁻⁵ 29; α (M)=3.49×10 ⁻⁶ 5 α (N)=4.38×10 ⁻⁷ 6; α (O)=2.88×10 ⁻⁸ 4; α (IPF)=0.0001158 17 Mult.: from DCO ratio in (³⁰ Si, α 2pn γ) for intraband γ .
11257.4	(45/2+)	1852 [#] 1	100	9405.4	(41/2 ⁺)	(E2) ^e	3.98×10 ⁻⁴ 6	α (K)=0.0001426 20; α (L)=1.525×10 ⁻⁵ 21; α (M)=2.56×10 ⁻⁶ 4 α (N)=3.22×10 ⁻⁷ 5; α (O)=2.118×10 ⁻⁸ 30; α (IPF)=0.0002371 34 Mult.: from DCO ratio in (³⁰ Si, α 2pn γ) for intraband γ .
11614	$(45/2^{-})$	1685 [#] 1	100	9929.3	$(41/2^{-})$			
12114	$(47/2^{-})$	1718 [#] 1	100	10396.1	$(43/2^{-})$			
12376?	$(45/2^+)$	1893 ^{‡g}	100	10482	$(41/2^+)$			
12525	(47/2 ⁻)	1696 [#] 1	100	10829	(43/2 ⁻)			Other E γ : 1693.3 in (³⁰ Si, α 2pn γ).
13427.5	$(49/2^+)$	2170 [#] 1	100	11257.4	$(45/2^+)$			
13486	$(49/2^{-})$	1872 [#] 1	100	11614	$(45/2^{-})$			5
14010	(51/2 ⁻)	1896" <i>1</i>	100	12114	(47/2 ⁻)	(E2) ^e	4.12×10 ⁻⁴ 6	α (K)=0.0001365 <i>19</i> ; α (L)=1.458×10 ⁻⁵ <i>20</i> ; α (M)=2.446×10 ⁻⁶ <i>34</i> α (N)=3.08×10 ⁻⁷ <i>4</i> ; α (O)=2.027×10 ⁻⁸ <i>28</i> ; α (IPF)=0.000258 <i>4</i> Mult.: Q from DCO ratio in (³⁰ Si, α 2pn γ) for intraband γ .
14424	$(51/2^{-})$	1899 [#] 1	100	12525	$(47/2^{-})$			
15576	$(53/2^{-})$	2090 [#] 1	100	13486	$(49/2^{-})$			
15924.5	$(53/2^+)$	2497 <mark>#</mark> 1	100	13427.5	$(49/2^+)$			
16176	$(55/2^{-})$	2166 [#] 1	100	14010	$(51/2^{-})$			
16794	$(55/2^{-})$	2370 [#] 1	100	14424	$(51/2^{-})$			
17956	$(57/2^{-})$	2380 [#] 1	100	15576	$(53/2^{-})$			
18720	(59/2 ⁻)	2544 [#] 1	100	16176	(55/2 ⁻)			
1215.0+x 2586.0+x	J1+2 I1+4	1215 <i>I</i> 1371 <i>I</i>	$0.65 \ 10$ 0.95 \ 10	X 1215 0±x	J1≈(31/2) 11±2			
4105.7+x	J1+4 J1+6	1520 1	1.25 15	2586.0+x	J_{1+2} J_{1+4}			
4119.4+x	J1+6	1528 <i>I</i>		2591.4+x	J1+4			
5785.4+x	J1+8	1533 <i>1</i> 1666 <i>1</i> 1680 <i>1</i>	1.10 10	2586.0+x 4119.4+x 4105.7+x	J1+4 J1+6 J1+6			

From ENSDF

 $^{81}_{38}{
m Sr}_{43}{
m -}16$

$\gamma(^{81}\text{Sr})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\&}$	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Ι _γ &	E_f	\mathbf{J}_{f}^{π}
5796.7+x	J1+8	1677 <i>1</i>		4119.4+x	J1+6	22364+x?	J1+22	2845 <mark>8</mark>		19519+x	J1+20
		1691 <i>1</i>		4105.7+x	J1+6	24460+x	J1+24	2747 1	0.10 5	21713+x	J1+22
7625.1+x	J1+10	1828 <i>1</i>		5796.7+x	J1+8	1646.0+y	J2+2	1646 <i>1</i>		у	J2≈(33/2)
		1840 <i>1</i>	1.45 15	5785.4+x	J1+8	3420.0+y	J2+4	1774 <i>1</i>	0.95 15	1646.0+y	J2+2
7679.7+x	J1+10	1883 <i>1</i>	0.60 20	5796.7+x	J1+8	5346.1+y	J2+6	1926 <i>1</i>	0.90 15	3420.0+y	J2+4
9613.1+x	J1+12	1988 <i>1</i>	1.50 15	7625.1+x	J1+10	7430.1+y	J2+8	2084 1	1.20 20	5346.1+y	J2+6
9714.8+x	J1+12	2035 1	0.80 20	7679.7+x	J1+10	9670.1+y	J2+10	2240 1	0.80 20	7430.1+y	J2+8
11753.1+x	J1+14	2140 1	1.70 15	9613.1+x	J1+12	12068.2+y	J2+12	2398 1	0.75 20	9670.1+y	J2+10
11918.8+x	J1+14	2204 1	0.50 15	9714.8+x	J1+12	14608+y	J2+14	2540 1	0.45 20	12068.2+y	J2+12
14047 + x	J1+16	2294 <i>1</i>	1.60 15	11753.1+x	J1+14	17305+y	J2+16	2697 1		14608+y	J2+14
14288+x	J1+16	2369 1	0.50 15	11918.8+x	J1+14	1940.0+z	J3+2	1940 <i>1</i>	0.50 20	Z	J3≈(41/2)
16488+x	J1+18	2441 <i>1</i>	1.15 15	14047+x	J1+16	4042.1+z	J3+4	2102 <i>I</i>	0.70 20	1940.0+z	J3+2
16823+x	J1+18	2535 1	0.45 15	14288+x	J1+16	6302.1+z	J3+6	2260 1	0.55 20	4042.1+z	J3+4
19052+x	J1+20	2564 1	0.80 10	16488+x	J1+18	8711.1+z	J3+8	2409 1	0.95 20	6302.1+z	J3+6
19519+x	J1+20	2696 1	0.20 10	16823+x	J1+18	11253.2+z	J3+10	2542 1	0.55 20	8711.1+z	J3+8
21713+x	J1+22	2661 I	0.20 10	19052+x	J1+20	13852.2+z?	J3+12	2599 <mark>8</mark>		11253.2+z	J3+10

17

[†] For SD band gammas, values are from 2003Le08 in ⁵⁸Ni(²⁹Si, α 2p γ). For all other gammas, E γ is from ⁸¹Y ε decay unless noted to the contrary.

[‡] From (³⁰Si, α 2pn γ).

[#] From (²⁹Si, α 2py); Δ Ey \approx 1 keV or less. Evaluator has assigned Δ Ey=1 keV.

[@] From $(\alpha, xn\gamma)$.

& For the SD band gammas, values are from the intensity pattern shown in fig. 3 of 1995Ch56 (29 Si, $\alpha 2p\gamma$), and they represent (approximately) percent intensities of the 81 Sr channel in the reaction used. For all other gammas, I γ is relative photon branching; data are from (29 Si, $p2n\gamma$), unless noted to the contrary.

^{*a*} From ⁸¹Y ε decay.

^{*b*} From (³⁰Si, α 2pn γ).

^c Based on transition line width in level scheme drawing, this γ is the strongest one deexciting its parent level.

^d From $\gamma(\theta)$ and/or γ polarization data in $(\alpha, n\gamma)$, unless noted otherwise.

^{*e*} $\Delta \pi$ =no from level scheme.

^{*f*} Additional information 5.

^g Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $---- \rightarrow \gamma$ Decay (Uncertain)

<u>J3+12</u>	R	<u>13852.2+z</u>
<u>J3+10</u>		11253.2+z
<u>J3+8</u>		8711.1+z
J3+6		6302.1+z
J3+4		4042.1+z
J3+2		1940.0+z
$\frac{J3\approx(41/2)}{12\pm16}$	¢;	<u>z</u> 17305+v
J2+14		14608+y
<u>J2+12</u>		12068.2+y
J2+10	↓ ³ ³ , 3,	9670.1+y
J2+8		7430.1+y
J2+6		5346.1+y
J2+4		3420.0+y
J2+2		1646.0+y
J2≈(33/2)	↓ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	y
J1+24	↓ · · · · · · · · · · · · · · · · · · ·	24460+x
<u>J1+22</u>		<u>22364+x</u>
<u>J1+22</u>	<u>_`</u>	_/2 <u>1713+x</u>
J1+20	↓ / ¹ ∕ ² ² ²	<u> </u>
J1+20	_\ L & x L	<u>19052+x</u>
<u>J1+18</u>		$\frac{1}{16823+x}$
J1+18		16488+x
<u>J1+16</u>		<u>14288+x</u>
<u>J1+16</u>		$\frac{14047 + x}{14047 + x}$
J1+14		// <u>11918.8+x</u>
<u>J1+14</u>		$\frac{11753.1+x}{11753.1+x}$
<u>J1+12</u>		// <u>9714.8+x</u>
J1+12		<u>9613.1+x</u>
<u>J1+10</u>		$//_{$
<u>J1+10</u>		$\frac{7625.1+x}{7625.1+x}$
<u>J1+8</u>	√L Ý Ž Ž Ž _ ?	$\int \frac{5796.7 + x}{5795.4}$
<u>J1+8</u>		$\frac{5785.4+x}{1100}$
<u>J1+6</u>	<u>√└────────────────────────────────────</u>	$\frac{4119.4+x}{7}$
<u>J1+6</u>		$\frac{4105.7+x}{2501.4}$
<u>J1+4</u>		$\frac{2591.4+x}{2596.0}$
<u>J1+4</u>	<u>, </u>	<u>2586.0+x</u>
$\frac{J1+2}{I1\sim(31/2)}$		- <u>1215.0+x</u>
$\frac{31 \approx (31/2)}{(50/2^{-1})}$	· · · · · · · · · · · · · · · · · · ·	X 10720
$\frac{(3912)}{(57/2^{-})}$		18720
$\frac{(3112)}{(55/2^{-})}$		17956
$\frac{(33/2)}{(53/2)}$	¥	16176
(3312)		15576
1/2-		0.0

0.0 22.3 min 4

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $-- \mathbf{b} \gamma$ Decay (Uncertain)

Legend

 $^{81}_{38}{
m Sr}_{43}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $- - - \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Band(D): SD-4 band (2003Le08, 1995Ch56)					
	<u>13852.2+z</u>				
J3+10	2599 11253.2+z				
J3+8	2542 8711.1+z				
J3+6	2409 6302.1+z				
J3+4	²²⁶⁰ 4042.1+z				
J3+2	²¹⁰² 1940.0+z				

z

J3≈(41/2) ¹⁹⁴⁰

Band(B): SD-2 band (2003Le08, 1995Ch56)

J2+16		17305+y
J2+14	2697	14608+y
J2+12	2540	12068.2+y
J2+10	2398	9670.1+y
J2+8	2240	7430.1+y
J2+6	2084	5346.1+y
J2+4	1926	3420.0+y
J2+2	1774	1646.0+y
J2≈(33/2)	1646	У

Band(A): SD-1 band (2003Le08, 1995Ch56,1999Le56)

J1+24		24460+x
J1+22	2747	21713+x
J1+20	2661	19052+x
J1+18	2564	16488+x
J1+16	2441	14047+x
J1+14	2294	11753.1+x
J1+12	2140	9613.1+x
J1+10	1988	7625.1+x
J1+8	1840	5785.4+x
J1+6	1680	4105.7+x
J1+4	1520	2586.0+x
J1+2	1371	1215.0+x
J1~(31/2)	1215	x

(2003Le08,1995Ch56)				
<u>J1+22</u>	<u>22364+x</u>			
J1+20	2845 19519+x			
J1+18	2696 16823+x			
J1+16	2535 14288+x			
J1+14	²³⁶⁹ 11918.8+x			
J1+12	²²⁰⁴ 9714.8+x			
J1+10	²⁰³⁵ 7679.7+x			
J1+8	¹⁸⁸³ 5796.7+x			
J1+6	¹⁶⁷⁷ 4119.4+x			
J1+4	1528 2591.4+x			

Band(C): SD-3 band

Band (E): $\alpha = -1/2$, (v
$5/2[422])(\pi g_{9/2})^2$
band

$(35/2^+)$	7448.9
(31/2+) 1447	6002.1
(27/2+) 1249	4752.8
$(23/2^+)$ 1039	3713.7
	•

 $^{81}_{38} Sr_{43}$

Adopted Levels, Gammas (continued)

 $^{81}_{38}{
m Sr}_{43}$