⁷⁸Kr(α ,n γ),⁸⁰Kr(α ,3n γ) 1983Ar16

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

⁸¹Sr Levels

See also 1983ArZY.

 $(\alpha, n\gamma)$: E α =14-18 MeV, 99% ⁷⁸Kr solid and gas targets.

 $(\alpha,3n\gamma)$: E α =45 MeV, 70% ⁸⁰Kr gas target.

Measured E γ , I γ with coaxial Ge(Li) and low-energy photon detectors. $\gamma(\theta)$ measured with escape-suppression spectrometer, γ linear polarization with 3-crystal Ge(Li) Compton spectrometer. Also measured excit, $\gamma\gamma$ coin, n- γ coin, T_{1/2} from DSAM.

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2} #	Comments
0 ^{<i>c</i>}	$1/2^{-}$		
79.2 ^b 4	5/2-	$0.55^{\textcircled{0}}$ µs 10	
89.0^{a} 6	$(7/2^+)$	$>1.5^{@}$ us	
$119.8^{\&}4$	$1/2^{(+)}$	24° ns 4	
$132.2^{a}.7$	$(9/2^+)$	$< 9^{\circ}$ ns	
155.3 [°] 3	$(3/2^{-})$	74 ps 20	
203.5 5	$(5/2^+)$	1.1 ns 3	
221.0 ^{&} 4	$3/2^{(+)}$	0.63 ns 20	J^{π} : 3/2 from $221\gamma(\theta)$.
294.9 <i>4</i>	3/2-		
336.5 ^{&} 4	$5/2^{(+)}$	160 ps 50	
366.6 <mark>b</mark> 5	7/2-	53 ps 15	
379.3 [°] 3	5/2-	12 ps 6	
535.8 6	$(5/2^{-})$		
558.4 ^{&} 5	$7/2^{(+)}$	17 ps 17	
611.8 7	$(7/2^+)$		
632.6° 4	7/2-		
706.9° 5	9/2-		
796.8 ^{x} 6	9/2(+)		
810.7 ^{<i>a</i>} 8	$(11/2^+)$	2.8 ps 9	
$904.7^{4} 8$	$(13/2^{+})$	4.6 ps 13	
$999.9^{\circ} 4$	(9/2)		
1055.0° /	11/2		
1109.5 6	$11/2^{(1)}$		
$1332.0^{\circ} 0$	$\frac{11/2}{12/2(+)}$		
14/0.8 ⁻ /	13/2		
1505.6° /	$\frac{13}{2}$		
1739.8° 8 1804.2° 6	(13/2) $(13/2^{-})$		
1862 5 4 7	(15/2)		
1865.3^{a} 9	(15/2) $(17/2^+)$	1.0 ps 3	
1910 9 ^b 8	$(17/2^{-})$	110 po e	
2212.6 [°] 7	$(15/2^{-})$		
2326.1 ^{&} 8	(17/2)		
2447.6 ^b 8	$(17/2^{-})$		
2962.4 ^{<i>a</i>} 10	(1),=)		

[†] From a least-squares fit to $E\gamma$.

$^{78}\mathrm{Kr}(\alpha,\mathbf{n}\gamma), ^{80}\mathrm{Kr}(\alpha,\mathbf{3n}\gamma)$ 1983Ar16 (continued)

⁸¹Sr Levels (continued)

- [±] Authors' values, based on $\gamma(\theta)$, γ linear polarization, T_{1/2} and reaction systematics. Consistent (apart from use of parentheses) with adopted values.
- [#] From DSAM in $(\alpha, n\gamma)$ at $E\alpha$ =18 MeV, except as noted.
- [@] From pulsed beam measurements (3 ns pulse width, 1 μ s pulse separation).
- [&] Band(A): $K^{\pi} = 1/2^+$ band.
- ^{*a*} Band(R): $g_{9/2}$ band. ^{*b*} Band(C): $K^{\pi} = 5/2^{-}$ band.
- ^c Band(D): $K^{\pi} = 1/2^{-}$ band.

$\gamma(^{81}\mathrm{Sr})$

A₂, A₄ from $\gamma(\theta)$ along with pol(90°) (γ linear polarization at 90°) are given in comments.

E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [@]	$\delta^{@}$	α &	Comments
(9.8)		89.0	(7/2+)	79.2	5/2-				E_{γ} : from Adopted Gammas. Not seen by 1983Ar16; probably below detection threshold (1983ArZY).
43.2 4	158	132.2	(9/2+)	89.0	(7/2 ⁺)	D+Q	-0.08 3		$A_2 = -0.32$ 3; $A_4 = 0$ Mult.: probably an M1+E2, $\Delta J=1$ transition; A_2 is somewhat negative for pure D (1983Ar16).
^x 61.1 4									
79.2 4	275	79.2	5/2-	0	1/2-	(E2)		2.39 6	A ₂ =+0.10 2; A ₄ =+0.02 2 Mult.: A ₂ , A ₄ ; attenuated due to level $T_{1/2}$ and consistent with Q; $\alpha(\exp)>1.7$ from intensity balance at 79 level rules out E1 and pure M1; excit for 79 γ limits J(79 level) to 3/2 or 5/2.
101.2 4	33	221.0	$3/2^{(+)}$	119.8	$1/2^{(+)}$	D+Q	-0.5 2		$A_2 = +0.14$ 7; $A_4 = 0$.
114.5 ^b 4	10	203.5	$(5/2^+)$	89.0	$(7/2^+)$				E_{γ} : assignment to ⁸¹ Sr uncertain.
115.5 4	38	336.5	5/2(+)	221.0	3/2(+)	D+Q	-0.2 1		$A_2 = -0.\overline{38}$ 6; $A_4 = 0$. Mult.: anisotropy suggests a mixed $\Delta J = 1$ transition (1983Ar16).
119.8 4	100	119.8	1/2 ⁽⁺⁾	0	1/2-	(E1)		0.0597 11	A ₂ =-0.02 2; A ₄ =-0.01 2 Mult.: authors consider B(E1)(W.u.)= 8.3×10^{-6} 14 more likely in this mass region than B(M1)(W u)= 5.0×10^{-4} 9
^x 122.0 4									
124.2 4	80	203.5	$(5/2^+)$	79.2	$5/2^{-}$	D			$A_2 = +0.14 \ 3; A_4 = 0.00 \ 3$
155.2 4	160	155.3	3/2-	0	$1/2^{-}$	D(+Q)	+0.1 1		$A_2 = -0.06 4; A_4 = -0.02 5$
216.7 [‡] 4	47 [‡] 12	336.5	5/2 ⁽⁺⁾	119.8	1/2 ⁽⁺⁾	(E2)		0.0605	$36 < I\gamma < 59$. A ₂ =+0.26 4, A ₄ =0.00 5, pol (90°)=+0.25 17 for possible doublet are consistent with mult.=E2; polarization excludes J to (J-1) transition (1983Ar16).
221.0 4	104	221.0	3/2 ⁽⁺⁾	0	$1/2^{-}$	(E1)		0.01002	$A_2 = -0.14 \ 3; \ A_4 = +0.04 \ 3$ Pol(90°)=+0.12 7.
									Mult.: authors consider B(E1)(W.u.)= 2.6×10^{-5} more likely in this mass region than B(M1)(W.u.) $\approx 1.0 \times 10^{-3}$.
221.9 4	18	558.4	$7/2^{(+)}$	336.5	$5/2^{(+)}$				<i>6 () ()</i>
224.3 4	67	379.3	5/2-	155.3	3/2-	M1+E2	+0.13 8	0.0193 10	$A_2 = -0.09 4$; $A_4 = +0.03 4$ Pol(90°) = -0.67 12.
240.9 4	37	535.8	$(5/2^{-})$	294.9	$3/2^{-}$	(D)			$A_2 = -0.185; A_4 = -0.085$
253.5 4	30	632.6	7/2-	379.3	5/2-	M1		0.01373	$A_2=0.00 5; A_4=0.00$ Pol(90°)=-0.38 12.
277.5 [‡] 4	58 [‡]	366.6	7/2-	89.0	(7/2 ⁺)				A ₂ =+0.01 3; A ₄ =-0.03 3 Pol(90°)=-0.22 4. I _{γ} : I γ =94 (58+36), A ₂ , A ₄ , Pol(90°) all for a doublet. A ₂ (277.5 γ) is

ω

						$^{78}\mathbf{Kr}(\alpha,\mathbf{n}\gamma),^{80}\mathbf{Kr}(\alpha,\mathbf{3n}\gamma)$		1983Ar16 (co	ontinued)
$\gamma(^{81}Sr)$ (continued)									
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [@]	$\delta^{@}$	α ^{&}	Comments
									clearly >0 from I(278 γ)/I(287 γ) in spectrum gated by 689 γ (assuming $\gamma(\theta)$ from 1976Fr10 for mult=(M1) γ in ⁸¹ Rb); this implies considerable mixing for a Δ J=1 transition.
287.3 4	113	366.6	7/2-	79.2	5/2-	M1+E2	+2.2 8	0.0203 21	$A_2 = +0.48 \ 2; \ A_4 = +0.17 \ 2$ Pol(90°)=-0.15 6.
294.9 4	55	294.9	3/2-	0	1/2-	M1		0.00939	$A_2 = -0.01 5; A_4 = -0.03 6$ Pol(90°)=-0.57 12.
300.0 4	14	379.3	5/2-	79.2	$5/2^{-}$				
337.4 4	70	558.4	7/2 ⁽⁺⁾	221.0	3/2 ⁽⁺⁾	E2		0.01299 23	$A_2 = +0.33 4$; $A_4 = -0.06 5$ $Pol(90^\circ) = +0.60 10$.
367.2 4	12	999.9	$(9/2^{-})$	632.6	7/2-				
379.4 4	71	379.3	5/2-	0	1/2-	E2		0.00876	$A_2 = +0.30 \ 2; \ A_4 = -0.08 \ 3$ Pol(90°)=+0.51 <i>11</i> .
408.3 4	38	611.8	$(7/2^+)$	203.5	$(5/2^+)$	(M1)		0.00424	A ₂ =-0.30 δ ; A ₄ =+0.02 δ Mult.: D from $\gamma(\theta)$; adopted $\Delta \pi$ =(no).
460.3 4	65	796.8	$9/2^{(+)}$	336.5	$5/2^{(+)}$	0			$A_2 = +0.41$ 4: $A_4 = -0.05$ 5
477.0 [‡] 4	74 [‡]	632.6	7/2-	155.3	3/2-	×.			$A_2 = +0.13 4$, $A_4 = -0.08 5$, $Pol(90^\circ) = +0.10 6$, and $I\gamma = 95$ (74+(21)) for a doublet
551 1 1	63	1100 5	11/2(+)	558 /	7/2(+)	0			$A_{2} = \pm 0.37$ 2: $A_{3} = -0.14$ 3
620.8 4	62	000.0	$(0/2^{-})$	370.3	5/2-	Q			$A_2 = +0.372, A_4 = -0.143$
627.7.4	02	706.9	(9/2)	70.2	5/2-			0.00100	$A_2 = \pm 0.373, A_4 = -0.044$
(74.0.4	24	1470.9	$\frac{3}{2}$	706.0	3/2	0		0.00190	$P_{2} = +0.402, R_{4} = -0.023$ $P_{0} = -0.688.$
674.04	37	14/0.8	$13/2^{(1)}$	/96.8	9/2(1)	Q	0.41 6.2	1.24 10-3.2	$A_2 = +0.30$ 3; $A_4 = -0.08$ 4
6/8.6 4	87	810.7	$(11/2^{+})$	132.2	(9/2+)	MI+E2	-0.41 -6+2	1.34×10 ⁻³ 2	$A_2 = -0.85 4$; $A_4 = 0.00 3$ Pol(90°) = -0.07 6.
689.1 4	63	1055.6	11/2-	366.6	7/2-	E2		1.47×10^{-3}	$A_2 = +0.36 \ 4; \ A_4 = -0.17 \ 5$ Pol(90°)=+0.62 <i>10</i> .
700.0 [‡] 4	31 [‡]	1332.6	11/2-	632.6	7/2-				$A_2 = +0.22 4$, $A_4 = -0.06 4$, pol (90°)=+0.18 7 for a possible doublet with I $\gamma = 60 (31+(29))$.
753.0 4	22	1862.5	(15/2)	1109.5	$11/2^{(+)}$				•
772.3 4	140	904.7	(13/2+)	132.2	$(9/2^+)$	E2		1.09×10^{-3}	$A_2 = +0.32 4$; $A_4 = -0.08 5$ Pol(90°)=+0.55 7.
798.6 4	68	1505.6	$13/2^{-}$	706.9	$9/2^{-}$	(O)			$A_2 = +0.36$ 3; $A_4 = +0.08$ 4
804.2 [‡] 4	27‡	1804.2	(13/2 ⁻)	999.9	(9/2 ⁻)				A2=+0.34 5, A ₄ =-0.05 5 for a possible doublet with $I\gamma$ =56 (27+(29)).
^x 825.0 4									I_{γ} : 26< $I\gamma$ <83.
835.0 4	40	1739.8	(15/2 ⁺)	904.7	(13/2 ⁺)	E2+M1		0.00086 4	$A_2 = -0.33 4$; $A_4 = 0.00 4$ Pol(90°)=+0.19 9.
855.3 ^{<i>a</i>} 4	35 ^a	1910.9	(15/2 ⁻)	1055.6	11/2-	Q			$A_2 = +0.36 4$, $A_4 = -0.15 5$, and $I\gamma = 48 (35+13)$ for a doublet.

4

 $^{81}_{38}\rm{Sr}_{43}\text{-}4$

From ENSDF

 $^{81}_{38}{
m Sr}_{43}$ -4

⁷⁸Kr(α ,n γ),⁸⁰Kr(α ,3n γ) **1983Ar16** (continued) $\gamma(^{81}\text{Sr})$ (continued)

Eγ [†]	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α ^{&}	Comments
855.3 ^{<i>a</i>} 4 880.0 4	13 ^a 23 4	2326.1 2212.6	(17/2) (15/2 ⁻)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Q)		A2=+0.36 4, A ₄ =-0.15 5, and I γ =48 (35+13) for a doublet.
929.3 ^b 4 942 0 4	16 17	1739.8 2447 6	$(15/2^+)$ $(17/2^-)$	810.7 (11/2 ⁺ 1505 6 13/2 ⁻)		
960.6 4	36	1865.3	$(17/2^+)$ $(17/2^+)$	904.7 (13/2+) E2	6.36×10^{-4}	$A_2 = +0.44$ 4; $A_4 = -0.02$ 5
1097.5 4		2962.4		1865.3 (17/2+)		PO((90)) = +0.95 20.

[†] $\Delta E=0.1-0.4 \text{ keV}$ depending on I γ and on the complexity of the spectrum; evaluator assigns 0.4 keV throughout. [‡] Not resolved from ⁸¹Rb transition; I γ divided by 1983Ar16 based on I γ for ⁸¹Rb in 1976Fr10. [#] For (α ,n γ) at E α =18 MeV; based on $\gamma(\theta)$ or yield at 54°. Uncertainty not stated.

[@] From $\gamma(\theta)$ and/or γ linear polarization data (pol (90°)) given in comments.

 $^{\&}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{81}_{38}{
m Sr}_{43}$

 $^{81}_{38}{
m Sr}_{43}$

⁷⁸Kr(α,nγ),⁸⁰Kr(α,3nγ) 1983Ar16

 $^{81}_{38}{\rm Sr}_{43}$