History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024			

1971Ra07: natural and 93.65% ⁸⁰Se targets. Ge(Li)-NaI pair spectrometer, FWHM=2.45 keV for Eγ≥2.5 MeV. Ge(Li) detectors for Ey=0-2.5 MeV, FWHM=1.05 keV at 122 keV and FWHM=2.4 keV at 1.33 MeV. Measured Ey, Iy, $\gamma\gamma$ (40-ns timing resolution).

Other measurements: 2007ChZX 'Budapest' data: natural target; $E\gamma$ and elemental cross sections measured for 13 known secondary and 1 known primary γ , $E\gamma$ alone for several additional secondary transitions; same as 2003ChZS. 1981En07: natural target, reported three primary γ -rays. 1970Ba54: 95.7% ⁸⁰Se target, four primary and three secondary γ -rays reported. σ_{γ} =0.593 b 46 ⁸¹Se^{m+g} (2018MuZY, 2008Na01).

S(n)=6101.1 6 measured by 1981En07 cf. 6700.8 3 from 2021Wa16.

⁸¹Se Levels

E(level) [†]	J ^{π‡}	Comments
0	1/2-	
102.87 10	7/2+	
293.96 21	9/2+	
467.86 <i>13</i>	3/2-	
491.24 25	$(5/2^{-})$	
616.7? <i>6</i>		
624.5 <i>3</i>	5/2-	
889.3 <i>3</i>	$(3/2^+, 5/2, 7/2^+)$	
1051.8 4	5/2+	
1232.89 23	1/2+	
1303.61 23	5/2+	
1406.6 4	3/2-	
1702.0 4	3/2+	
1711.3 <i>3</i>	$(5/2^{-}, 1/2^{-}, 3/2)$	
1725.11 19	$(3/2)^+$	
1828.2 4	3/2+	
2174.2 6		
2253.0 4	$(5/2^+)$	
2333.3 3	5/2+	
2383.3 9	$(5/2^{-},7/2,9/2^{-})$	
2568.5 8	(1/2, 3/2)	
2773.6 5	5/2+	
2952.9 10	1/2,3/2,5/2+	
3525.7 <mark>#</mark> 11	1/2,3/2,5/2+	
(6701.1 4)	1/2+@	E(level): from a least-squares fit. S(n)=6700.8 3 (2021Wa16).

[†] From a least-squares fit to $E\gamma$, excluding $E\gamma$ for all multiply-placed lines.

[‡] From Adopted Levels.

[#] 1971Ra07 show no γ deexciting this level; however, the unplaced 3056.5 γ has plausible E γ and I γ for a 3526 to 468 level transition. ^(a) J^{π} based on s-wave thermal neutron capture by $J^{\pi}=0^+$ target.

⁸⁰Se(n, γ) E=thermal 1971Ra07 (continued)

$\gamma(^{81}\text{Se})$

I γ normalization: Absolute intensity (intensity/100 neutron captures by ⁸⁰Se) measured by 1971Ra07. Intensities calibrated relative to I(479 γ) in boron(n, γ) (for low E γ) and I(7367.7 γ) in Pb(n, γ) (for high E γ); uncertainty \approx 10% for E $\gamma \leq$ 2000, 15% for E $\gamma >$ 2000. Absolute intensity data from 'Budapest data' in 2007ChZX are in satisfactory agreement for the 468 γ and 4976 γ , but are typically high by factors of 2 to 16 for the other lines common to both studies.

No capture state to g.s. transition was found (I γ <0.2%).

The relatively strong 521 γ branch deexciting the 624 level in ⁸¹As β^- decay is not reported in (n, γ); however, it would probably have been masked in (n, γ) by a ⁷⁷Se impurity γ (see 1974Ch11).

E_{γ}^{\dagger}	$I_{\gamma}^{@b}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
102.89 10	1.11 8	102.87	7/2+	0	1/2-	
126 [‡] 1	< 0.1	616.7?		491.24	(5/2 ⁻)	
148 [‡] 1	< 0.1	616.7?		467.86	3/2-	
156.4 <i>3</i>	0.24 4	624.5	5/2-	467.86	3/2-	Other: $E\gamma = 156.9 \ 3$, $I\gamma = 1.4 \ 4$ (2007ChZX,
101.05.20	0.66.6	203.06	0/2+	102.87	7/2+	'Budapest' data).
264.8.3	0.00 0	889 3	$(3/2^+ 5/2, 7/2^+)$	624.5	5/2-	
388.4 3	0.67 5	491.24	$(5/2^{-})$	102.87	$7/2^+$	
399.8 [°] 6	0.14 ^c 4	889.3	$(3/2^+, 5/2, 7/2^+)$	491.24	$(5/2^{-})$	
399.8 ⁰ 6	0.14 [°] 4	1702.0	3/2+	1303.61	5/2+	
467.74 15	44 5	467.86	3/2-	0	1/2-	Other: $E\gamma = 467.77 \ 4$, $I\gamma = 44 \ 3$ (2007ChZX, 'Budapest' data).
491.33 ^d 15	6.2 ^{d&} 5	491.24	$(5/2^{-})$	0	1/2-	
491.33 ^{de}	<0.6 ^{<i>d</i>&}	1725.11	(3/2)+	1232.89	1/2+	E_{γ} : 491.33 <i>15</i> for doublet. Other: E_{γ} =491.16 <i>9</i> , I_{γ} =7.6 <i>12</i> (2007ChZX, 'Budapest' data).
649.5 5	0.17 4	1702.0	3/2+	1051.8	5/2+	
672.19 ^c	0.51 [°] 5	1725.11	$(3/2)^+$	1051.8	5/2+	E_{γ} : 672.19 25 for doublet.
672.19 ^c 25	0.51 [°] 5	2383.3	$(5/2^-, 7/2, 9/2^-)$	1711.3	$(5/2^-, 1/2^-, 3/2)$	
^x 721.3 [‡] 6	0.8 3					
757.6 3	0.47 10	1051.8	5/2+	293.96	9/2+	Other: $E\gamma = 757.3 \ 3$, $I\gamma = 3.0 \ 8 \ (2007 \text{ chZX}, \text{`Budapest' data}).$
765.04 20	1.54 13	1232.89	1/2+	467.86	3/2-	Other: $E\gamma = 765.48 \ 9$, $I\gamma = 3.1 \ 4 \ (2007 \text{ChZX}, $ 'Budapest' data).
786.4 4	0.56 15	889.3	$(3/2^+, 5/2, 7/2^+)$	102.87	7/2+	Other: $E\gamma$ =785.98 <i>17</i> , $I\gamma$ =1.8 <i>5</i> (2007ChZX, 'Budapest' data).
^x 788.5 5	<0.6					
^x 799.6 [‡] 7	0.06 3					
^x 805.1 [‡] 7	0.08 4					
812.5 [°] 6	0.28° 4	1303.61	5/2+	491.24	(5/2 ⁻)	
812.5° 6	0.28° 4	1702.0	3/2+	889.3	$(3/2^+, 5/2, 7/2^+)$	
835.74 20	1.10 12	1303.61	5/2+	467.86	3/2-	
889+ 1	0.7	889.3	$(3/2^+, 5/2, 7/2^+)$	0	$1/2^{-}$	
915.4 0 x018 8 5	0.10 4	1406.6	3/2	491.24	(5/2)	
$0.28 \frac{7d}{2}$	0.155	1406.6	2/2-	167.86	2/2-	
930.7 3	-0.30 4	1400.0	3/2	407.60	$\frac{3}{2}$	
938.7 5 949.65 ^C 25	$\leq 0.04^{-1.0}$	1020.2	5/2+	009.5 102.87	$(3/2^+, 3/2, 1/2^+)$	
949.65 [°] 25	$1.25^{\circ} 15$	2253.0	$(5/2^+)$	1303.61	5/2 ⁺	
x987 7 [‡] 8	0.09.4		(-)	10 00 001	-,-	
x993 0 [‡] &	0.29 11					
JJJ.0° 0	0.29 11					

⁸⁰Se(\mathbf{n},γ) E=thermal **1971Ra07** (continued)

$\gamma(^{81}\text{Se})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\textcircled{0}{0}}b$	E _i (level)	J_i^π	E _f	J_f^π	Comments
$x_{1012.7}^{\pm} 5$ $1087.2^{c} 4$ $1087.2^{c} 4$ 1162.0 10 $x_{1164.5 4}$ 12010 10	$\begin{array}{c} 0.20 \ 9 \\ 0.25 \ 5 \\ 0.24^{c} \ 6 \\ 0.24^{c} \ 6 \\ 0.7 \ 3 \\ < 0.8 \\ 0 \ 4 \ 3 \end{array}$	1702.0 1711.3 2568.5	3/2 ⁺ (5/2 ⁻ ,1/2 ⁻ ,3/2) (1/2,3/2) 5/2 ⁺	616.7? 624.5 1406.6	5/2 ⁻ 3/2 ⁻ 7/2 ⁺	Other: $E_{2} = 1202.35.9$ $I_{2} = 12.9.14$
1210.8 <i>10</i> 1232.7 ^c 1232.7 ^c 1243.54 <i>25</i> 1257.14 <i>20</i>	0.7 4 0.33 ^c 6 0.33 ^c 6 0.66 6 1.11 9	1702.0 1232.89 1725.11 1711.3 1725.11	$3/2^+$ $1/2^+$ $(3/2)^+$ $(5/2^-, 1/2^-, 3/2)$ $(3/2)^+$	491.24 0 491.24 467.86 467.86	(5/2 ⁻) 1/2 ⁻ (5/2 ⁻) 3/2 ⁻ 3/2 ⁻	 Content Ey=1202.55 y, fy=12.5 F4 (2007ChZX, 'Budapest' data). E_γ: 1232.7 4 for doublet. Ey=1257.8 6, Iγ=1.4 11 (2007ChZX, 'Budapest' data).
x1327.7 8 1360.7 10 1367.2 10 1406.7 4	0.15 5 0.24 5 0.33 5 1.3 2	1828.2 2773.6 1406.6	3/2+ 5/2+ 3/2 ⁻	467.86 1406.6 0	3/2 ⁻ 3/2 ⁻ 1/2 ⁻	Other: $E\gamma$ =1406.8 <i>3</i> , $I\gamma$ =4.9 <i>11</i> (2007ChZX, 'Budapest' data).
x1462.3 [‡] 3 1549.4 7 x1562.5 5 1599.5 5 1627.1 10	$\begin{array}{c} 0.22 & 0 \\ 0.21 & 6 \\ 0.30 & 5 \\ 0.24 & 4 \\ 0.35 & 4 \\ 0.28 & 5 \end{array}$	2174.2 1702.0 2253.0	3/2 ⁺ (5/2 ⁺)	624.5 102.87 624.5	5/2 ⁻ 7/2 ⁺ 5/2 ⁻	
$1636.2^{\ddagger} 8$ ^x 1670.0 [‡] 6 1702.2 10 1706.6 7 1711.0 6 1725.4 3	0.38 7 0.33 5 0.33 11 0.52 6 0.55 8 5.9 5	2253.0 1702.0 2174.2 1711.3 1725.11	(5/2 ⁺) 3/2 ⁺ (5/2 ⁻ ,1/2 ⁻ ,3/2) (3/2) ⁺	616.7? 0 467.86 0 0	1/2 ⁻ 3/2 ⁻ 1/2 ⁻ 1/2 ⁻	Other: Εγ=1725.36 <i>15</i> , Ιγ=15.2 <i>20</i>
x1769.3 6 1784.8 8	0.33 <i>5</i> 0.90 <i>24</i>	2253.0	(5/2+)	467.86	3/2-	(2007ChZX, 'Budapest' data). Other: Eγ=1784.7 <i>6</i> , Iγ=3.1 <i>10</i> (2007ChZX, 'Budapest' data).
x1799.5 [‡] 6 1828.1 4 1841.9 5 x1858.5 [‡] 10 1865.3 3	0.24 6 0.39 5 0.26 5 0.13 4 0.57 7	1828.2 2333.3 2333.3	3/2 ⁺ 5/2 ⁺ 5/2 ⁺	0 491.24 467.86	1/2 ⁻ (5/2 ⁻) 3/2 ⁻	Other: Ey=1863.9 4, Iy=3.8 14 (2007ChZX,
1884.2 5 1892.0 8 ×1896.3 8	0.50 6 0.24 5 0.38 6	2773.6 2383.3	5/2 ⁺ (5/2 ⁻ ,7/2,9/2 ⁻)	889.3 491.24	(3/2 ⁺ ,5/2,7/2 ⁺) (5/2 ⁻)	'Budapest' data).
x1951.3 4 1959.5 5 x2032.2 6 x2041.1 5	0.60 7 0.42 7 0.40 2 0.40 1	2253.0	(5/2+)	293.96	9/2+	
^x 2051.0 ⁺ 8 2149.6 ^c 8 2149.6 ^c 8 ^x 2151.3 6 ^x 2162.3 7	0.21 8 0.32 ^c 8 0.32 ^c 8 0.8 2 1.10 3	2253.0 2773.6	(5/2 ⁺) 5/2 ⁺	102.87 624.5	7/2 ⁺ 5/2 ⁻	

Continued on next page (footnotes at end of table)

			⁸⁰ Se(r	η,γ) E=the	rmal 1971	Ra07 (continued)	
$\gamma(^{81}\text{Se})$ (continued)							
E_{γ}^{\dagger}	Ι _γ @ <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments	
^x 2207.1 6	0.38 11						
$x^{2218.6^{\ddagger}}$ 10	0.7 3						
^x 2273.2 6	0.48 20						
2485.6 20	0.65 20	2952.9	1/2,3/2,5/2+	467.86	3/2-	Other: $E\gamma$ =2483.4 4, $I\gamma$ =5.2 14 (2007ChZX, 'Budapest' data).	
2570.0 15	1.37 20	2568.5	(1/2,3/2)	0	1/2-	Other: $E\gamma$ =2569.8 <i>3</i> , $I\gamma$ =2.8 <i>11</i> (2007ChZX, 'Budapest' data).	
^x 2694.0 <i>10</i>	1.32 20					I I I I I I I I I I I I I I I I I I I	
^x 2731.3 <i>13</i>	1.07 20						
^x 2792.1 20	0.68 22						
x2910.1 <i>12</i>	1.35 20						
^x 2966.0 <i>13</i>	1.08 20						
^x 3056.5 [#] 15	1.00 15						
3175.4 10	1.16 20	(6701.1)	$1/2^{+}$	3525.7	1/2,3/2,5/2+		
3748.3 10	1.7 4	(6701.1)	$1/2^{+}$	2952.9	1/2,3/2,5/2+		
^x 3820.4 [‡] 18	0.55 15						
4133.7 12	0.83 15	(6701.1)	1/2+	2568.5	(1/2, 3/2)		
^x 4310.6 [‡] 14	0.50 20						
^x 4336.6 20	0.7 3						
4366.2 10	2.0 4	(6701.1)	1/2+	2333.3	5/2+		
4447.5 10	1.86 25	(6701.1)	$1/2^{+}$	2253.0	$(5/2^+)$		
^x 4540.4 [‡] 24	0.50 20						
4975.9 <i>5</i>	8.7 23	(6701.1)	1/2+	1725.11	$(3/2)^+$	E _γ : from 1981En07. Other: 4976.1 <i>10</i> (1971Ra07), 4975.5 <i>5</i> (2007ChZX).	
						Other I <i>y</i> : 5.2 <i>18</i> (2007ChZX, 'Budapest' data), 8.8 20 (1981En07), 8.4 (1970Ba54).	
4997.5 17	0.43 14	(6701.1)	$1/2^{+}$	1702.0	3/2+		
5295.3 17	0.22 10	(6701.1)	1/2+	1406.6	3/2-		
5469.7 12	0.45 15	(6701.1)	1/2+	1232.89	$1/2^{+}$	Other data: $E\gamma = 5467.6 \ 8, \ I\gamma = 2.0 \ 6 \ (1981En07).$	
6232.9 11	33 6	(6701.1)	1/2+	467.86	3/2-	E_{γ} : from 1981En07. Other: 6233.0 <i>15</i> (1971Ra07). Other I γ : 29 7 (1981En07), 21 (1970Ba54). However, γ is absent in 2007ChZX.	

[†] From 1971Ra07, except as noted. Several otherwise unknown transitions listed in 2007ChZX, 'Budapest' data are not included here because it is unclear whether these were actually observed or merely expected (no I γ reported).

[‡] Uncertain γ -transition.

[#] See comment on 3526 level concerning possible placement of this γ .

[@] Photons per 100 captures in ⁸⁰Se from 1971Ra07, except as noted. Authors' uncertainties in relative I γ are shown; the additional uncertainty in absolute I γ is \approx 10% for E $\gamma \leq 2$ MeV, 15% for E $\gamma > 2$ MeV noted in 1971Ra07 – the evaluator assigns 15% for all. Except for the 468 γ and 4976 γ , 'Budapest' data from 2007ChZX (which supersedes 2003ChZS) is in poor agreement.

[&] I γ =6.2 5 for doublet. Assuming I(388 γ)/I(491 γ)=0.101 12 for 491 level branching (from β^- decay), I γ =6.6 9 for the 491 to g.s. component of 491 γ in (n, γ), leaving I γ =-0.4 10 for the 1725 to 1233 component. The evaluator, therefore, assigns the entire doublet I γ to the former transition and an upper limit of 0.6 to the latter. Placement of latter component is, consequently, shown as tentative.

^{*a*} I γ =0.36 4 for doublet. Assuming I(938 γ)/I(1406 γ)=0.33 6 for 1407-level branching (from β^- decay), I γ =0.43 10 for 1407 to 468 transition in (n, γ), leaving I γ =-0.07 11 for 1828 to 889 component. Evaluator, therefore assigns the entire doublet I γ to the former transition and an upper limit of 0.04 to the latter.

^b For intensity per 100 neutron captures, multiply by 1.00 15.

^c Multiply placed with undivided intensity.

^d Multiply placed with intensity suitably divided.

⁸⁰Se(n, γ) E=thermal 1971Ra07 (continued)

 $\gamma(^{81}\text{Se})$ (continued)

 e Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme.

⁸⁰Se(n,γ) E=thermal 1971Ra07

 $^{81}_{34}$ Se $_{47}$

 $^{81}_{34}$ Se $_{47}$