Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

 $Q(\beta^-)=1588.0 \ 14$; $S(n)=6700.8 \ 3$; $S(p)=11463 \ 3$; $Q(\alpha)=-7601.1 \ 10$ 2021Wa16 $S(2n)=16614.2 \ 10$, $S(2p)=21440 \ 40 \ (2021Wa16)$. Other Reactions:

²H(⁸⁰Se,pγ), E(⁸⁰Se)≈320 MeV (2007Ci05); investigated feasibility of measuring γ-rays in coincidence with (d,p) reaction protons in inverse kinematics using CD₂ targets; observed 765γ-468γ cascade and 1233γ from 1233 level.

2015Al19: Isotopic yield cross section $\sigma(^{81}Se)=0.011$ mb 3, in spallation of ^{136}Xe -induced reactions on deuterium at 500 MeV/nucleon.

⁸¹Se Levels

Cross Reference (XREF) Flags

		A 81	As β^- decay	$E = \begin{cases} 80 \text{ Se(pol d,p),(d,p)} \\ 0 \end{cases}$
		B 81	Se IT decay (57.28 min) F 82 Se(p,d)
		C 80	$Se(n,\gamma)$ E=the	ermal $G \xrightarrow{82} Se(d,t)$
		D 80	$Se(n,\gamma)$ E=res	$H = {}^{208}\text{Pb}({}^{18}\text{O},\text{X}\gamma)$
E(level) [†]	J ^{π#}	T _{1/2}	XREF	Comments
0	1/2-	18.5 min 1	ABCDEFGH	$\%\beta^{-}=100$
				$T_{1/2}$: weighted average of 18.2 min 2 (1954Yt03), 18.6 min <i>I</i> (1957Ap46), 17.9 min 5 (1971Do09), and 18.2 min 2 (1975Fe07).
102.968 10	7/2+	57.28 min 2	ABC EF H	$\%11=99.913$ 15; $\%\beta^{-}=0.087$ 15
				J^{*} : L(d,p)=4, E3(+M4) γ to 1/2 . T _{1/2} : from 1989Ab18. Others: 57.28 min 5 (1971Do09), 56.6 min 6
				(1967Ra08). All measurements from $103\gamma(t)$.
				$\%\varepsilon + \%\beta^+$ deduced by the evaluator using data of ⁸¹ Se IT decay and
				β^- decay (57.28 m). See ⁸¹ Se β^- decay (57.28 m) dataset.
294.19 ^C 18	9/2+		C EFGH	
467.75 9	3/2-		A CDEFg	
491.05 10	$(5/2^{-})$		AC Fg	J ^{π} : log <i>ft</i> ≈5.9 from 3/2 ⁻ ; L(p,d)=(3); E2 γ to 1/2 ⁻ .
615.6? 5			С	
624.10 <i>12</i>	5/2-		A C EFG	XREF: E(635).
782 25	7/2+,9/2+		F	J^{π} : L(p,d)=4.
889.41 20	$(3/2^+, 5/2, 7/2^+)$		C	J ^{π} : γ from 3/2 ⁺ , 786 γ to 7/2 ⁺ 103. If 889 γ to 1/2 ⁻ g.s. is correctly assigned, $J^{\pi} = (3/2^+, 5/2^-)$.
1052.73 13	5/2+		A C EFG	
1059.0 ^C 3	$(11/2^+)^{b}$		Н	
1109 25	$3/2^+, 5/2^+$		F	J^{π} : L(p,d)=2.
1232.79 22	$1/2^{+}$		CE	J^{π} : L(d,p)=0.
1303.41 16	5/2+		A C EFG	
1373.0 ^c 3	$(13/2^+)^{b}$		Н	
1406.28 14	3/2-		A C EFG	
1628 25	1/2-,3/2-		F	J^{π} : L(p,d)=1.
1702.5 3	3/2+		CE	
1711.25 21	(5/2 ⁻ ,1/2 ⁻ ,3/2)		С	J^{π} : γ s to $1/2^-$ and $5/2^-$; absence of primary γ from $1/2^+$ favors the $5/2^-$ option.
1724.99 15	$(3/2)^+$		CD F	J^{π} : primary γ from 1/2 ⁺ ; 1725 γ to 1/2 ⁻ g.s.; L(p,d)=2 for level at 1753 25, assumed by evaluator to be the same as this 1725 level.
1812 25	7/2+,9/2+		F	J^{π} : L(p,d)=4.
1828.1 <i>3</i>	3/2+		CE	-
2029.65 15	1/2-,3/2-		A EF	XREF: E(2036)F(2056).

Continued on next page (footnotes at end of table)

Other Reactions.

Adopted Levels, Gammas (continued)

⁸¹Se Levels (continued)

E(level) [†]	J ^{π#}	Х	REF	Comments
				J^{π} : L(p,d)=1 for E(level)=2056 25; consistent with observed gammas to $1/2^{-}$ and $3/2^{-}$.
2150 25 2173.9 5	1/2-,3/2-	С	F ef	J^{π} : L(p,d)=1. XREF: e(2175)f(2199).
2179.32 17		A	ef	$J': \gamma$ to $5/2$ and to $3/2$. L=2 in (p,d) and (pol d,p) for 21/4 and/or 21/9 level(s). XREF: e(2175)f(2199).
2252.96 23	(5/2+)	С		J^{*} : γ to (5/2). L=2 in (p,d) and (pol d,p) for 21/4 and/or 21/9 level(s). J^{π} : 1785 γ to 3/2 ⁻ 468; 1960 γ to 9/2 ⁺ 294; primary γ from 1/2 ⁺ . Assignment implies [E2] for primary γ from 1/2 ⁺ .
2282 25	1/2-,3/2-		F	J^{π} : L(p,d)=1.
2333.07 20	5/2+	A C	EF	J^{π} : 5/2 ⁺ from (pol d,p), consistent with primary γ from 1/2 ⁺ but 2332 γ to 1/2 ⁻ g.s. implies level half-life > 1.7 ps for B(M2) W.u. \leq 1 (RUL). L(p,d)=(2+4) for E=2325, so another π =+ level may exist at approximately this energy.
2383.4 <i>3</i> 2475 25	(5/2 ⁻ ,7/2,9/2 ⁻)	C	F	J^{π} : 1892 γ to (5/2 ⁻) 491, no primary γ from 1/2 ⁺ .
2532 [‡]	(5/2)+		EF	J^{π} : $J^{\pi}=5/2^+$ from (pol d,p) is in conflict with L(p,d)=4. The evaluator adopts $(5/2)^+$ because the DWBA fit is better and $\sigma(\theta)$ spans a greater angular range in the (d,p) measurement. Alternatively, a different level with $J^{\pi}=7/2^+, 9/2^+$ and similar energy measurement is a constant of $\sigma(\theta)$.
2568 8 0	(1/2) (2/2)	~		may be excited in (p,d). π_{1} primery a from $1/2^{+}$: 2570a to $1/2^{-}$ a s and 1160a to $2/2^{-}$ 1406
2569.97 13	(1/2, 3/2) $(1/2^{-}, 3/2^{-}, 5/2^{-})$	A		J^{π} : log ft =5.3 from 3/2 ⁻ .
2596+	1/2-,3/2-		EF	J^{π} : L(p,d)=1.
2659.65 20	(5/2)	A	EF	$J^{*}: \log ft = 5.8 \text{ from } 3/2 ; L(p,d) = 3.$
2691.3° 4 2734 [‡]	(15/2',17/2')		н Е	
2769.76 17	$(5/2^{-})^{@}$	A	f	XREF: f(2763). $I^{\pi} \log t = 5.3$ from $3/2^{-1}$: L(p,d)=(3+2).
2773.6 5	5/2+	C	Ef	XREF: f(2763).
2832.2 5	$(17/2^{-})^{b}$		Н	J ^{π} : negative parity assigned (¹⁸ O,x γ) based on non-observation of a transition to (13/2 ⁺) state at 1372.
2891 [‡]	$(7/2^+, 9/2^+)^{\&}$		Ef	XREF: f(2893).
2935.17 14	$(5/2)^{-}$	A	f	XREF: f(2893). J^{π} : log <i>ft</i> =4.9 from 3/2 ⁻ ; 2832 γ to 7/2 ⁺ 103. Consistent with L=(3) component of
4				2893 doublet in (p,d).
2938 [‡]	$(1/2^+)$		E	J^{π} : L(d,p)=(0).
2953.4 20	$1/2, 3/2, 5/2^+$, C	_	$J^{\prime\prime}$: primary γ from $1/2^+$.
2905.08 19	(3/2)	A	F	AREF: $F(2985)$. $I^{\pi} \cdot \log t = 5.2$ from $3/2^{-1} \cdot 16622$ to $5/2^{+1} \cdot 1304 \cdot I (n d) = (3)$
2985 25	$(7/2^+, 9/2^+)^a$		F	J $10g_{J} = 5.2$ from $5/2^{-}$, 1002^{-} , 1002^{-} , 1004^{-} , $L(p, u) = (5)$.
2986 [‡]	$(1/2^+)$		E	$\mathbf{I}^{\pi} \cdot \mathbf{I} (\mathbf{d} \mathbf{p}) = (0)$
3053 [‡] 6	$(1/2)^{+}$		FF	S = E(3,p) - (0). XREF : F(3087)
3003	5/2		E	AREF. 1 (5007).
3093	$(\overline{})$		E	\mathbb{I} , \mathbb{I} (m d)-(1+2)
3130° 23	()		r	J: L(p, u) = (1+5).
3208 ⁺ 3222.7? 16	(5/2)-	A	Ef	XREF: f(3257). E(level): from β^- decay; see comment in source data set. J^{π} : γ to (5/2 ⁻) and 7/2 ⁺ , log <i>ft</i> >4.9 from 3/2 ⁻ (if deexcitation γ rays placed
2207				
328/*			Eİ	XKEF: I(3237).
3308+	1 /2- 2 /2		E	T T T (1) 4
3349+ 25	1/2-,3/2-		F	J^{n} : L(p,d)=1.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸¹Se Levels (continued)

E(level) [†]	$J^{\pi \#}$	XREF	Comments
3379 [‡]		E	
3411 [‡]		Е	
3435 [‡]		Е	
3477 [‡]		Е	
3525.7 11	1/2,3/2,5/2+	CE	E(level): from (n,γ) E=Thermal. J ^{π} : primary γ from $1/2^+$.
3562 [‡]		Е	
3682 [‡]	3/2+	Е	
3774 [‡]	3/2+,5/2+	Е	J^{π} : L(d,p)=2.
3801.1		Н	
38307	1/2+	E	
3920?	$(1/2^+)$	E	J^{n} : L(d,p)=(0). I^{π} : L(d,p)=(0)
4005	(1/2)	F	J : L(a,p) = (0).
4095		E	
4157		E	
4104	$(3/2^+ 5/2^+)$	E E	I^{π} : I (d p)-(2)
4213	(3/2, 3/2) $(3/2^+, 5/2^+)$	E	J : L(a,p) - (2).
4200	(3/2,3/2)	F	J : L(a,p) - (2).
4457		E	
4559		E	
4030		E	
4/00		E	
4043		E	
4938 ·		E	
5180?		E	
5330?		Ē	

- [†] From a least-squares fit to $E\gamma$ if $\Delta E < 1$ keV; from (p,d) if $\Delta E = 25$ keV; from (pol d,p) otherwise. Based on a comparison with E(level) derived from $E\gamma$ data for E(level)<3550, E(level) data from 1978Mo12 and 1960Ca16 in (d,p) are reliable to better than 6 keV (typically 0-2 keV), with the exception of the 635 level (which is 11 keV high). For E(level)>1400, E(level) values from (p,d) are 10-30 keV higher than those from (d,p). The evaluator, therefore, adopts E(level) from (d,p) in preference to E(level) from (p,d).
- [‡] Estimated $\Delta E \approx 6$ keV from level energy deviations of (d,p) dataset from adopted values by more than 6 keV.
- [#] From (pol d,p), unless noted otherwise. From DWBA analysis of angular distribution and vector analyzing power (1978Mo12).
- [@] L(p,d)=(2+3) for 2763 25 state. Evaluator assumes this to be 2770+2774 doublet, in which case the L=(2) component would correspond to the 2774 level, leaving the L=(3) component to correspond to the 2770 level, thus favoring J^{π} =5/2⁻,7/2⁻ for it.

& L(p,d)=(3+4) for 2893 25 state. Evaluator assumes this to be 2891+2935 doublet, in which case the L=(3) component would correspond to the 2935 level leaving the L=(4) component to correspond to the 2891 level, favoring $J^{\pi}=7/2^+,9/2^+$ for this level.

^{*a*} L(p,d)=(3+4) for 2985 25 state. Evaluator assumes this to be a doublet, in which case the L=(3) component could correspond to the 2965 level leaving the L=(4) component to correspond to an E≈2986 level and favoring $J^{\pi}=7/2^+,9/2^+$ for this level. The L(d,p)=(0) state at E=2986 is then presumed to be a different level.

^b Based on the assumption (by authors in 2009Po04 ($^{18}O,x\gamma$)) that in yrast decays spin values increase with excitation energy. See the dataset for other assumptions.

^c Band(A): Yrast sequence.

$\gamma(^{81}\text{Se})$

Additional information 1.

4

E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
102.968	7/2+	102.968 10	100	0	1/2-	E3(+M4)	<0.0056	6.80 10	B(E3)(W.u.)=9.47×10 ⁻⁴ 13 α (K)=5.30 7; α (L)=1.286 18; α (M)=0.2006 28 α (N)=0.01349 19 E _v ,I _v ,Mult.: from ⁸¹ Se IT decay.
									δ: <0.0056 if B(M4)(W.u.)<30. From α(K)exp=7.1 3and α(L)exp=1.6 3 (81Se IT decay) usingBriccMixing code, one gets δ=0.171 1; yields highervalue compared to RUL.
294.19	9/2+	190.83 23	100	102.968	7/2+				E_{γ} : weighted average of 191.05 20 from (n,γ) E=thermal and 190.6 2 from $({}^{18}O.X\gamma)$.
467.75	3/2-	467.74 15	100	0	$1/2^{-}$				
491.05	(5/2 ⁻)	388.2 2	10.6 8	102.968	7/2+				E_{γ} : weighted average of 388.1 2 from ⁸¹ As β ⁻ decay and 388.4 3 from (n, γ) E=thermal.
									I _γ : weighted average of 10.1 <i>12</i> from ⁸¹ As β ⁻ decay and 10.8 8 from (n,γ) E=thermal. Mult.: L≤2 from RUL and 40-ns coin resolving time in (n,γ) E=thermal. Mult.=M2 implies $T_{1/2}$ (491 level)>17 ns if B(M2)(W.u.)<1, so is unlikely. If $T_{1/2}$ (491 level)>40 ns, B(E2)(W.u.)<0.007 (also unlikely).
		491.28 15	100.0 [‡] <i>12</i>	0	1/2-	(E2)		0.00291 4	α (K)=0.00258 4; α (L)=0.000279 4; α (M)=4.33×10 ⁻⁵ 6 α (N)=3.64×10 ⁻⁶ 5
									 E_γ: weighted average of 491.2 2 from ⁸¹As β⁻ decay and 491.33 <i>15</i> from (n,γ) E=thermal. Mult.: D,E2 from RUL and 40-ns coin resolving time in (n,γ) E=thermal; ΔJ>1 from level scheme.
615.6?		126 ^b 1		491.05	$(5/2^{-})$				
		148 ^b 1		467.75	3/2-				
624.10	5/2-	156.1 2	20.3 [‡] 29	467.75	3/2-	[M1,E2]		0.09 6	α (K)=0.08 6; α (L)=0.010 7; α (M)=0.0015 11 α (N)=1.2×10 ⁻⁴ 8
									E _γ : weighted average of 156.0 2 from ⁸¹ As β^- decay and 156.4 3 from (n,γ) E=thermal. Mult.: M1.E2 expected for 5/2 ⁻ to 3/2 ⁻ transition.
		521.1 [‡] 2	100 [‡] 10	102.968	$7/2^{+}$				
889.41	$(3/2^+, 5/2, 7/2^+)$	264.8 <i>3</i>	29 7	624.10	5/2-				

$\gamma(^{81}Se)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Comments
889.41	$(3/2^+, 5/2, 7/2^+)$	399.8 ^a 6	≤32 ^{<i>a</i>}	491.05	(5/2 ⁻)	
		786.4 4	100 27	102.968	7/2+	
		889 <mark>6</mark> 1	125	0	1/2-	
1052.73	5/2+	757.6 3	100 12	294.19	9/2+	01
		949.68 20	<298	102.968	7/2+	E _y : weighted average of 949.7 2 from ⁸¹ As β^- decay and 949.65 25 from (n, γ) E=thermal.
						I_{γ} : for doublet in (n, γ) E=thermal; undivided I_{γ} given. Only this branch is reported in β^{-} decay.
1059.0	$(11/2^+)$	764.7 ^{@#} 3	100	294.19	9/2+	
1232.79	$1/2^{+}$	765.04 20	100 8	467.75	3/2-	
		1232.7 ^a	$\leq 25^{a}$	0	1/2-	
1303.41	5/2+	812.5 ^{<i>a</i>} 6	$\leq 29^{\prime\prime}$	491.05	(5/2 ⁻)	
		835.92 20	100 11	467.75	3/2-	E _y : weighted average of 836.1 2 from ⁸¹ As β^- decay and 835.74 20 from (n, γ) E=thermal.
		1201.0 10	36 27	102.968	7/2+	
1373.0	$(13/2^+)$	313.9 ^{#@} 3	37 # 7	1059.0	$(11/2^+)$	
		1078.9 [#] 2	100 [#] 10	294.19	$9/2^{+}$	
1406.28	3/2-	915.0 2	9.5 20	491.05	(5/2 ⁻)	E_{γ} : weighted average of 915.0 2 from ⁸¹ As β^{-} decay and 915.4 6 from (n, γ) E=thermal.
						I _{γ} : weighted average of 10.2 20 from ⁸¹ As β^- decay and 7.7 31 from (n, γ) E=thermal.
		938.8 2	28.8 31	467.75	3/2-	E_{γ} : weighted average of 938.9 2 from ⁸¹ As β^{-} decay and 938.7 3 from (n, γ) E=thermal.
						I_{γ} : weighted average of 33 6 from ⁸¹ As β^- decay and 27.7 31 from (n,γ) E=thermal
		1406.1 <i>3</i>	100.0 [‡] 12	0	1/2-	E_y : weighted average of 1406.0 2 from ⁸¹ As β^- decay and 1406.7 4 from
1702.5	$3/2^{+}$	399.8 ^a 6	<26 ^a	1303.41	$5/2^{+}$	
	-1-	649.5 5	24 6	1052.73	5/2+	
		812.5 ^a 6	≤46 ^{<i>a</i>}	889.41	$(3/2^+, 5/2, 7/2^+)$	
		1087.2 ^{<i>a</i>} 4	≤43 ^{<i>a</i>}	615.6?		
		1210.8 10	100 57	491.05	$(5/2^{-})$	
		1599.5 5	50 6	102.968	7/2+	
		1702.2 10	47 16	0	1/2-	
1711.25	$(5/2^-, 1/2^-, 3/2)$	1087.2 ^{<i>a</i>} 4	≤45 ^{<i>a</i>}	624.10	5/2-	
		1243.54 25	100 9	467.75	3/2-	
		1711.0 6	83 12	0	$1/2^{-}$	
1724.99	$(3/2)^+$	491.33 ^b 672.19 ^a 25	≤10 ≤9.5 ^a	1232.79 1052.73	1/2+ 5/2+	E=491.33 15 for doublet in (n,γ) E=thermal; divided I γ given.

S

Adopted Levels, Gammas (continued)

$\gamma(^{81}Se)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Comments
1724.99	(3/2)+	1232.7 ^{<i>a</i>} 1257.14 20 1725 4 3	$\leq 6.6^{a}$ 18.8 15 100.8	491.05 467.75	(5/2 ⁻) 3/2 ⁻ 1/2 ⁻	
1828.1	3/2+	938.7 <i>3</i> 1360.7 <i>10</i> 1828.1 <i>4</i>	≤ 10 $\leq 2 13$ 100 13	889.41 467.75 0	$(3/2^+, 5/2, 7/2^+)$ $3/2^-$ $1/2^-$	$E\gamma$ is for doublet in (n,γ) E=thermal; divided I γ given.
2029.65	1/2-,3/2-	1561.9 [‡] 2	100 [‡] 11	467.75	3/2-	
2173.9		2029.6 [‡] 2 1549.4 7 1706.6 7	60‡ 5 58 10 100 12	0 624.10 467.75	1/2 ⁻ 5/2 ⁻ 3/2 ⁻	
2179.32 2252.96	(5/2+)	1688.4 [‡] 2 949.65 25 1627.1 10 1636.2 8 1784.8 8 1959.5 5	$100^{\ddagger} \le 156$ 31 6 42 8 100 27 47 8	491.05 1303.41 624.10 615.6? 467.75 294.19	(5/2 ⁻) 5/2 ⁺ 5/2 ⁻ 3/2 ⁻ 9/2 ⁺ 7/2 ⁺	E_{γ} , I_{γ} : for doublet in (n, γ) E=thermal; undivided $I\gamma$ given.
2333.07	5/2+	1842.1 2	≤43** 54 9	491.05	(5/2 ⁻)	 E_γ: weighted average of 1842.1 2 from ⁸¹As β⁻ decay and 1841.9 5 from (n,γ) E=thermal. I_γ: weighted average of 61 9 from ⁸¹As β⁻ decay and 46 9 from (n,γ) E=thermal.
		1864.9 <i>4</i>	100 11	467.75	3/2-	E _{γ} : unweighted average of 1864.5 2 from ⁸¹ As β^- decay and 1865.3 3 from (n, γ) E=thermal.
						r_{γ} . weighted average of 100 17 from $r_{AS} p$ decay and 100 12 from (n, γ) E=thermal.
		2332.3 [‡] 2	58 [‡] 9	0	1/2-	E_{γ} : reported only in β^- decay; placement implies mult=M2, see comments with the level for J^{π} .
2383.4	(5/2 ⁻ ,7/2,9/2 ⁻)	672.19 ^a 25	$\leq 233^{a}$	1711.25	$(5/2^{-}, 1/2^{-}, 3/2)$	
2568.8	(1/2,3/2)	1162.0 <i>10</i> 2570.0 <i>15</i>	51 22 100 15	1406.28 0	$(3/2^{-})$ $3/2^{-}$ $1/2^{-}$	γ reported in (n,γ) only.
2569.97	$(1/2^-, 3/2^-, 5/2^-)$	2079.3 [‡] 2	18.6 [‡] 27	491.05	(5/2-)	
		2102.2 2	100 [‡] 11	467.75	3/2-	
		2569.5 [‡] 2	47 [‡] 5	0	1/2-	E_{γ} : could be same as 2570 γ in (n, γ) E=thermal or could be doublet deexciting both 2569 and 2570 levels.
2659.65	$(5/2)^{-}$	2659.6 [‡] 2	100‡	0	1/2-	
2691.3	$(15/2^+, 17/2^+)$	1318.2 [#] 3	100	1373.0	$(13/2^+)$	
2769.76	(5/2 ⁻)	2145.8 [‡] 2	$20^{\ddagger} 4$	624.10	5/2-	

6

$\gamma(^{81}\text{Se})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
2769.76	$(5/2^{-})$	2301.8 [‡] 2	100 [‡] 10	467.75	3/2-
2773.6	5/2+	1367.2 10	66 10	1406.28	3/2-
		1884.2 5	100 12	889.41	$(3/2^+, 5/2, 7/2^+)$
		2149.6 ^a 8	<80 ^a	624.10	5/2-
2832.2	$(17/2^{-})$	140.9 [#] 2	100	2691.3	$(15/2^+, 17/2^+)$
2935.17	$(5/2)^{-}$	756.0 [‡] 2	61 [‡] 7	2179.32	
		1882.0 [‡] 2	<3 [‡]	1052.73	5/2+
		2832.4 [‡] 2	100 [‡] 11	102.968	7/2+
2953.4	1/2,3/2,5/2+	2485.6 20	100	467.75	3/2-
2965.08	(5/2 ⁻)	1661.8 [‡] 2	100 [‡] 15	1303.41	5/2+
		2340.8 [‡] 2	59 [‡] 9	624.10	5/2-
3222.7?	$(5/2)^{-}$	2733.3 ^{‡b} 2	100 [‡] 15	491.05	$(5/2^{-})$
		3118.2 ^{‡b} 2	38 [‡] 10	102.968	7/2+
3801.1		968.9 [#] 4	100	2832.2	(17/2 ⁻)

-

[†] From ⁸⁰Se(n, γ) E=thermal, except as noted. [‡] From ⁸¹As β^- decay. [#] From (¹⁸O, $x\gamma$).

[@] Assumed to be of M1 (dipole) transition (by authors ($^{18}O, x\gamma$)), based on the 1079 γ crossover transition.

[&] Additional information 2. ^a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

⁸¹₃₄Se₄₇

9

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $-- \rightarrow \gamma$ Decay (Uncertain)

Legend

⁸¹₃₄Se₄₇

 $^{81}_{34}{
m Se}_{47}$