Adopted Levels, Gammas

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

 $Q(\beta^{-}) = -3929 \ 6$; $S(n) = 11353 \ 5$; $S(p) = 4852 \ 5$; $Q(\alpha) = -4647 \ 6$ 2021Wa16 S(2n)=20797 5, S(2p)=13967 5 (2021Wa16). Other Reactions:

Measured yields of ⁸¹Rb for 1000 stopped antiproton on ⁹⁵Mo and ⁹⁸Mo: 35 7 and 22 6, respectively. The targets were irradiated at LEAR, CERN with an average proton rate of 10^4 per sec for about six hours. Identified residual ⁸¹Rb by γ -spectroscopy (1986Mo20).

2015All9: Isotopic yield cross section $\sigma(^{81}\text{Rb})=0.780$ mb 75, in spallation of $^{136}\text{Xe-induced}$ reactions on deuterium at 500 MeV/nucleon.

⁸¹Rb Levels

Band structure is from 1994Do18 with minor band extensions from 1993LiZR (the structure deduced in 1989Ta09 is basically consistent, but much less extensive). 1994Do18 report four more bands than 1993LiZR, but 1993LiZR extend slightly the bands common to both studies. There are, however, several significant inconsistencies between the schemes of 1993LiZR and 1994Do18. Most involve the 3-quasiparticle structure and its interconnection with the lowest π =- and π =+ bands; 1994Do18 report 13 interconnecting transitions, 1993LiZR report 9, but only 2 transitions are common to both studies. Another difference concerns the parity of the 3056 level (π =- in 1994Do18, π =+ in 1993LiZR and 1989Ta09); see comment on J^{π} for 3056 level. The published study of 1994Do18 has the better statistical accuracy, the unpublished study of 1993LiZR has the potential for populating bands to higher spin. Therefore, the evaluator tentatively adopts band extensions indicated in 1993LiZR, but does not adopt any other structure from 1993LiZR unless it has been confirmed in 1994Do18. The reader is referred to the ${}^{53}Cr({}^{31}P,2pn\gamma)$ data set for details of 1993LiZR data not adopted here.

Cross Reference (XREF) Flags

		$ \begin{array}{ccc} \mathbf{A} & {}^{81}\mathrm{Sr} \\ \mathbf{B} & {}^{81}\mathrm{Rl} \\ \mathbf{C} & {}^{44}\mathrm{Ca} \\ \mathbf{D} & {}^{53}\mathrm{Cn} \\ \end{array} $	$c \epsilon$ decay (22.3 m b IT decay (30.5 a(37 Cl, γ):giant re c(31 P,2pn γ)	nin) E min) F es G H	⁵⁵ Mn(²⁹ Si,2pn γ), ⁶⁵ Cu(¹⁹ F,p2n γ) ⁷⁸ Kr(α ,p) ⁷⁹ Br(α ,2n γ), ⁶⁸ Zn(¹⁶ O,p2n γ)	I J	80 Kr(³ He,d) 68 Zn(¹⁹ F, α 2n γ),				
E(level) [†]	J ^π ‡	$T_{1/2}$ or $\Gamma^{(a)}$	XREF		Com	nents					
0.0 ^d	d 3/2 ⁻ 4.571 h 4 AB DEFGHIJ				 %ε+%β⁺=100 μ=+2.0591 14 Q=+0.48 10 μ: from 2019StZV (in 1981Th04 +2.0595 14, atomic beam laser spectroscopy). Q: from 2021StZZ (in 1981Th04 Q_s=+0.398 23 - laser induced optical pumping; includes anti-shielding correction). <r<sup>2>^{1/2}(charge)=4.221 fm 5 (2013An02).</r<sup> J^π: atomic beam (1956Ho52); L(³He,d)=1. T_{1/2}: weighted average of 4.570 h 4 (2004Sc04; decay followed for 15 half-lives), 4.580 h 9 (1970Wa38; authors' value based on independently determined values of 4.582 h 9, 4.581 h 9 and 4.575 h 35) and 4.565 h 9 (1982Gr07: followed for 6-10 half-lives). Other: 4.6 h 5 (1972Vad1) 						
86.31 ^{&} 6	31 ^{&} 6 9/2 ⁺ 30.5 min 3 AB DEFGHIJ				%IT=97.9 4; $\%\varepsilon + \%\beta^+=2.1 4$ $\mu=+5.5969 17$ Q=-0.90 19 $\%\varepsilon + \%\beta^+$ deduced by the evaluator using data in 1977Li14. See ⁸¹ Rb ε decay (30.5 m) dataset. %IT=100 - (2.1 4). μ : from 2019StZV (in 1981Th04, +5.5980 17 - atomic beam laser spectroscopy, 1981Th04). Q includes Sternheimer correction.						

⁸¹Rb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{@}$		XREF	Comments
					Q: From 2020StZV (in 1981Th04 -0.74 6 - atomic beam laser spectroscopy, includes Sternheimer correction). J ^π : atomic beam (1956Hu69); E3 γ to 3/2 ⁻ .
					$T_{1/2}$: weighted average of 31.5 min 20 (1956Do52), 30.25 min 25 (1977Li14), 30.59 min 28 (1980Ho28), and 33.2 min 11 (1981FrZY).
153.484 ^c 19	5/2-	0.21 ns 10	A	DEF H J	J^{π} : L(³ He,d)=3+1 for E=184 keV doublet; this level must correspond to the L=3 component since J(188 level)<5/2; D(+Q) γ to 3/2 ⁻ .
188.232 17	1/2 ⁻ ,3/2 ⁻		A	GI	J^{π} : L(³ He,d)=3+1 for E=184 keV doublet, presumably L=1 is the dominant component for this level (see comments for 153.484 keV level.). I($\varepsilon + \beta^+$) from 1/2 ⁻ .
245.273 25	5/2+		A	HI	J ^{π} : L(³ He,d)=2; γ to 9/2 ⁺ is not M3 from RUL.
301.242 ^f 16	$(3/2)^{-}$		Α	ΗJ	J ^{π} : γ to 5/2 ⁺ ; stronger I(ε + β ⁺) feeding from 1/2 ⁻ .
433.7 ^{<i>a</i>} 4	$(7/2^+)$			DE HJ	J ^π : D 347γ to 9/2 ⁺ ; γ from $(5/2)^+$ 828; stretched Q 553γ from $(11/2^+)$ 987.
443.393 19	$1/2^{(-)}, 3/2^{(-)}$		A	gі	XREF: g(461)i(454).
					J^{π} : stronger I($\varepsilon + \beta^+$) feeding from 1/2 ⁻ ; γ to 5/2 ⁻ . 3/2 ⁻ ,5/2 ⁻ doublet at 461 keV in (α ,p); however, the 463 level is also a possible candidate for the 3/2 ⁻ member
457	$(5/2)^{-}$			gi	XREF: $g(461)i(454)$.
					E(level): average of 461 (α ,p) and 454 (³ He,d).
					J ^{π} : L(³ He,d)=3+1; 3/2 ⁻ + 5/2 ⁻ doublet in (α ,p). Levels energetically not resolved from neighboring levels, but none of those is a candidate for I^{π} =5/2 ⁻
463.00 5	1/2+,3/2,5/2,7/2-		Α	gHi	XREF: $g(461)i(454)$.
					J^{π} : $(1/2^+, 3/2, 5/2, 7/2^-)$: γ s to $5/2^+$ and $3/2^-$. See also comment on J(443 level).
486.69 ⁸ 5	$(5/2^{-})$		Α	ΗJ	J^{π} : γ s to $3/2^{-}$ and $5/2^{-}$; band assignment.
574.737 23	$(1/2)^{-}$		Α	GΙ	J ^{π} : J dependence of (α ,p) measurement; L(³ He,d)=1.
612.27 ^d 23	7/2-	3.7 ps 3		DEF H J	J ^π : E2, Δ J=2, 612γ to 3/2 ⁻ g.s.; D γ from 9/2 ⁻ 913.6; band structure.
630.59 6	$(5/2^+)$		Α	GH	J^{π} : γ to $3/2^{-}$ and if the 545 γ to $9/2^{+}$ placement is correct.
702.165 35	(1/2 ⁻ ,3/2)		A	gi	J ^{α} : 1(ε + β ⁺) feeding from 1/2 ⁻ ; 549 γ to 5/2 ⁻ . L(³ He,d)=1 at 701 keV; J=(3/2) from J dependence in (α ,p) for 705-keV state. π =- for the 702 and/or the 712 level.
709.18 ^{&} 27	$(13/2)^+$	6.0 ps 3		DEF H J	J ^{π} : stretched E2 γ to 9/2 ⁺ ; band assignment.
711.933 <i>31</i>	$(1/2^{-}, 3/2, 5/2^{+})$		A	gi	J^{π} : probably fed from $1/2^{-}$ in ε decay; γ to $5/2^{-}$. See also comment on J(702 level).
827.5 7	$(5/2)^+$			GHI	J ^{π} : J dependence of (α ,p); L(³ He,d)=2.
896.25 ⁵ 27	$(7/2^{-})$			J	J^{π} : gammas to $3/2^{-}$ and $5/2^{-}$; band assignment.
909.092 18	$(3/2)^{-}$		Α	i	XREF: i(920).
010	(5.01)				J^{n} : γ to $5/2^{+}$; stronger ($\varepsilon + \beta^{+}$) feeding from $1/2^{-}$, See also comment on J(913 level).
913	(5/2 ')			Gl	XREF: $i(920)$. J^{π} : $L(^{3}He,d)=2+1$ for $E(\text{level})=920$; $J^{\pi}=(5/2^{+})$ from J dependence in (α,p) for $E(\text{level})=913$. Evaluator assumes the latter corresponds to L=2 component of the $(^{3}He,d)$ doublet; the L=1 component in $(^{3}He,d)$ could correspond to the 909 and/or the 923 level(s).
913.15 ^c 28	9/2-	1.46 ps 21		DEF H J	J^{π} : stretched E2 760 γ to 5/2 ⁻ 153; 300.8 γ D to 7/2 ⁻ ; band structure.
923.02 8	$(1/2^-, 3/2)$		A	Hi	XREF: H(?)i(920).

⁸¹Rb Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}$ or $\Gamma^{\textcircled{a}}$		XREF	Comments
			_		J^{π} : γ to 5/2 ⁻ . See also comment on J(913 level (5/2 ⁺)).
987.09 ^a 30	$(11/2^+)$			DE HJ	J^{π} : (M1) γ to (13/2) ⁺ and (M1+E2) γ to 9/2 ⁺ .
1035.3 4	$(11/2^+)$			НЈ	J^{π} : possibly a $\Delta J=1 \gamma$ to $9/2^+$; γ to $(13/2)^+$.
1061.43 7	1/2+		Α	т	I^{π} : L(³ He,d)=0.
1130	-, -			G	•••=(,, ••
1174.28 ⁸ 33	$(9/2^{-})$			НЈ	J^{π} : gammas to $7/2^{-}$ and $(5/2^{-})$; band structure.
1218.9.5	$1/2^{(+)}.3/2$		Α		J^{π} : γ to $(1/2^{-}.3/2.5/2^{+})$.
1243.63 13	$(1/2^+, 3/2)$		A		J^{π} : vs to $5/2^+$ and $3/2^-$, presence of $(\varepsilon + \beta^+)$ feeding from $1/2^-$ in ε
					decay.
1305.0 7	$(7/2, 9/2^+)$			GH	XREF: G(1284).
					J ^{π} : J dependence in (α ,p).
1381.907 28	$(3/2)^{-}$		Α		J^{π} : γs to $5/2^+$ and $(1/2)^-$, stronger I($\varepsilon + \beta^+$) feeding from $1/2^-$ in ε
					decay.
1390	$(5/2)^+$			GΙ	E(level): average of 1387 (α ,p) and 1392 (³ He,d).
					J^{π} : L(³ He.d)=2; J dependence in (α ,p).
1416 42 <mark>0</mark> 31	11/2-	1.04 ps 14		DFF H 1	I^{π} : F2 $\Lambda I=2 \gamma$ to $7/2^{-1}$: γ to $9/2^{-1}$: hand structure
1464 1 11	11/2	1.01 p5 17		н	I^{π} : γ to $(11/2^+)$
1513.11 12	(1/2, 3/2)		Α		J^{π} : presence of $(\varepsilon + \beta^+)$ feeding from $1/2^-$ in ε decay.
1551	$7/2^+.9/2^+$			GТ	XREF: $G(1543)I(1559)$.
1001	,,= ,>,=			-	I^{π} : L(³ He d)=1+4 for doublet at E \approx 1559 L=1 component presumed to
					correspond to 1554 level.
1553.677 35	$1/2^{-}.3/2^{-}$		Α	I	XREF: I(1559).
	1)-1				J^{π} : presence of $(\varepsilon + \beta^+)$ feeding from $1/2^-$ in ε decay: presumed to be
					the L=1 component of 1559-keV doublet in $({}^{3}$ He.d).
1581 23 8 33	$(17/2)^+$	0.84 ps 7			I^{π} : E2 AI-2 α to $(13/2)^+$; hand structure
1504.25 55	(17/2)	0.04 ps /		DEFILIS	J : E2, $\Delta J = 2$, γ to (15/2), band structure.
					and 0.87 ns 7 from PDM and DSA in ${}^{65}Cu({}^{19}En2na)$
1500 oct 25	(11)(2-)			_	and $0.87 \text{ ps} / 110111 \text{ KDW}$ and DSA III Cu($(\mathbf{r}, \mathbf{p}2\mathbf{i})$).
1596.26 35	(11/2)			J	J^{*} : γ s to (1/2) and 9/2; band structure.
1721	$(5/2)^{+}$			GI	$\begin{array}{c} \text{XREF: } I(1/26). \\ \hline \end{array}$
					E(level): from (α, p) .
					J ^A : 5/2 from J dependence of $\sigma(\theta)$ in (α, p) ; $\pi = +$ from L(³ He,d)=0+2
1706	1/2+			т	IOF 1/20-KeV doublet. $I\pi$, assuming this is L=0 component of doublet (see component on 1721)
1720	1/2			T	J [*] : assuming this is L=0 component of doublet (see comment on 1/21
1738 71 <mark>0</mark> 20	13/2-	3 33 pc 35			I^{π} : E2 AI-1 of to $0/2^{-1}$: D of to $11/2^{-1}$; hand assignment
1750.71 29 1774 8 <mark>0</mark> A	$(15/2^+)$	5.55 ps 55		DEP H J	J : E2, $\Delta J = 1$, γ to $\gamma/2$, $D \gamma$ to $(11/2)$, band assignment.
1804 36 13	(13/2)		Δ	C C	J^{π} : presence of $(s \pm \beta^{+})$ feeding from $1/2^{-}$ in s decay
1848 16 17	(1/2, 3/2) $(1/2^+ 3/2)$		A	U U	I^{π} : γ to $5/2^+$: presence of $(\varepsilon + \beta^+)$ feeding from $1/2^-$ in ε decay.
1919.9 4	$(1/2^+, 3/2)$ $(15/2^+)$			нт	J^{π} : O, $AJ=2$, 933y to $(11/2^+)$ 987: D $AJ=1$ 1211y to $(13/2)^+$ 709.
1967.69 <mark>8</mark> 35	$(13/2^{-})$			j	
2072	$(5/2)^+$			GI	XREF: G(2060)I(2083).
	(-1)				E(level): average of 2060 (α ,p) and 2083 (³ He,d).
					J^{π} : J dependence in (α, p) : $L({}^{3}$ He.d)=2.
2165.4 4	$(1/2^+)$		Α	I	J^{π} : γ to $(5/2^+)$: presence of $(\varepsilon + \beta^+)$ feeding from $1/2^-$ in ε decay:
					probably L=0 component of L=0+2. E=2195 doublet in $({}^{3}\text{He.d})$.
2205	$(5/2)^+$			GТ	E(level): from (α, \mathbf{p}) : E=2195 for doublet in (³ He.d).
	(-)-)			~ -	J^{π} : J dependence in (α ,p); probably the L=2 component of the
					$L(^{3}\text{He d})=0+2$ doublet
2264	+			т	E(level): For doublet in (³ He.d).
				-	J^{π} : L(³ He.d)=0+2.
2294 50 <mark>0</mark> 31	$(15/2^{-})$			рг н ј	I^{π} : (F2) γ to $11/2^{-}$: hand assignment
2291.50 51	$(5/2)^+$				$F(\text{level})$, from (α n): 2406 keV doublet in (³ He d)
	(3/2)			0 T	Elievely, nom (a,p), 2100 key doublet in (ne,d).

⁸¹Rb Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or $\Gamma^{@}$	XREF	Comments
				J ^{π} : J dependence of (α ,p) measurement. Probable L=2 component L(³ He,d)=0+2 doublet.
2395.2 ^f 6	$(15/2^{-})$		J	J^{π} : γ to (11/2 ⁻), band assignment.
≈2406	1/2+		I	J^{π} : L=0 component of 2406-keV, L=0+2 doublet in (³ He,d).
2425.68 ^{<i>i</i>} 29	(13/2 ⁻)		J	J ^{π} : tentative candidate in ${}^{68}Zn({}^{19}F,\alpha 2n\gamma)$ for 13/2 member of a band which includes the $(17/2^-)$ 2697 level; in that reaction, the 210.5 γ (not the unconfirmed 155 γ of ${}^{53}Cr({}^{31}P,2pn\gamma)$) was assigned to the γ cascade following the 61 γ which deexcites the J=17/2 band member.
2575.7 [°] 4	17/2-	1.4 ps 3	DEF H J	J^{π} : E2, $\Delta J=2$, γ to $13/2^{-}$; γ to $(15/2^{-})$; band structure. T _{1/2} : not corrected for feeding.
2598			i	$E(\text{level}), J^{\pi}$: doublet: $L({}^{3}\text{He,d})=1+2$.
2599.7 4			ij	J^{π} : (15/2 ⁻) – if the 15/2 member of the 3-quasiparticle band (in place of the 2636 level).
2608.1 ^{&} 4	$(21/2)^+$	0.34 ps 6	DEF H J	J^{π} : E2 γ to $(17/2)^+$: band assignment.
		1		$T_{1/2}$: weighted average of 0.42 ps <i>14</i> from ⁶⁵ Cu(¹⁹ F,p2n γ) and 0.33 ps 6 ⁵⁵ Mn(²⁹ Si,2pn γ), both from DSA; not corrected for feeding.
2636.18 ^h 28	(15/2 ⁻)		D J	J^{π} : D γ to (13/2 ⁻) and D+Q γ to (13/2) ⁺ 709, band assignment.
2638	3/2+,5/2+		GΙ	XREF: G(2620)I(2655).
0(5(22 6 22	17/2-	. 1	DE 1	J^{π} : L(³ He,d)=2.
2656.33 33	17/2	>1 ps	DE J	J^* : stretched Q 918y to 13/2 1/39, 362y to (15/2) 2294.
$2697.20^{\circ} 28$	$1^{7}/2$		D J	J^{*} : stretched Q 959 γ to 13/2 1739; D 61 γ to (15/2) 2636.
2760.0 <i>4</i> 2801	(19/2) $(17/2^{-})$ $1/2^{+}$		JE J GI	J^{π} : γ to (15/2); stand assignment. J^{π} : γ to (13/2 ⁻); stretched 840.5 γ Q from (21/2 ⁻) 3496.9. XREF: G(2801)I(2812).
				E(level): from (α, p) . Other: 2812 (³ He,d).
				J ^{π} : J dependence in (α ,p); L=0 component of L(³ He,d)=0+2
2012	2/2+ 5/2+		т	doublet.
2012	5/2 ,5/2		T	AKEF. I(2012). I^{π} : I = 2 component of I (³ He d)=0+2 doublet
2907	$3/2^+.5/2^+$		I	J^{π} : L ⁽³ He.d)=2.
$299773^{h}33$	$(19/2^{-})$		ר מ	I^{π} : D γ to $17/2^{-}$ hand assignment
3031	$3/2^+, 5/2^+$		I	J^{π} : L(³ He,d)=2.
3055.84 <mark>b</mark> 35	$(19/2^{-})^{\#}$		DE J	J^{π} : D 1472 γ to $(17/2)^+$; 761 γ to $(15/2^-)$ 2294; band
				assignment. Other: $(19/2^+)$ in 68 Zn $({}^{19}$ F, $\alpha 2n\gamma)$.
3069.5 5			J	J^{π} : gammas to $(17/2)^+$ and $(21/2)^+$.
3194.5 ^d 5	(19/2 ⁻)		D	J^{π} : intraband γ to $17/2^{-}$ 2576 and $(15/2^{-})$ 2294; band assignment.
3242	$(5/2)^+$		GI	XREF: G(3257)I(3227).
ſ				E(level): average of 3257 (α ,p) and 3227 (³ He,d). J ^{π} : J=5/2 from spin dependence of σ (DWBA) in (α ,p); L(³ He,d)=2.
3286.9 ^J 8	$(19/2^{-})$	–	J	J^{π} : γ to (15/2 ⁻), band assignment.
3295.2° 5	$(21/2)^{-}$	1.6 ps 7	DE HJ	J [*] : stretched Q 720 γ to 17/2 ⁻ 2576; band assignment.
3302	$3/2^{+}, 3/2^{+}$	1.04 25		J ^T : $L(-He, d) = 2$.
3421.0° 4	(21/2)	1.04 ps 35	ך ע	J": D γ to (19/2), band assignment.
3496.9 ^e 5 3665.7 5	21/2 ⁻ (19/2,21/2,23/2)	>1 ps	DE J E J	J^{π} : stretched Q γ to $17/2^{-}$ 2656, band assignment. J^{π} : D γ to $(21/2)^{+}$.

⁸¹Rb Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}$ or $\Gamma^{@}$	XRE	F	Comments
3765.8 ^{&} 7	$(25/2)^+$	0.166 ps 35	DE	НЈ	J^{π} : E2 γ to $(21/2)^+$; band assignment.
3956.4 ^b 4	(23/2 ⁻)	1.11 ps 14	D	J	J ^π : D γ to $(21/2)^+$; (Q) intraband γ to $(19/2^-)$. Other: $23/2^+$ in $({}^{31}P,2pn\gamma)$.
1					T _{1/2} : From Doppler-shifted lineshape in 68 Zn(19 F, $\alpha 2$ n γ).
3993.3 ^h 5	$(23/2^{-})$		D	J	J^{π} : γ to (19/2 ⁻) and (21/2 ⁻), band assignment.
4317.3 [°] 6	$(25/2)^{-}$	0.25 ps 5	DE	J	J^{π} : E2 γ to $(21/2)^{-}$; band assignment.
4496.5 ^e 6	$(25/2^{-})$		DE	J	J^{π} : (E2) γ to (21/2 ⁻); band assignment.
4591.4 ¹ 6	$(25/2^{-})$		D	J	
5062.2 ^b 6	$(27/2^{-})$	0.49 ps 14	D	J	T _{1/2} : from Doppler-shifted lineshape in 68 Zn(19 F, $\alpha 2n\gamma$).
5072.3 ^{&} 8	$(29/2)^+$	<0.18 ps	DE	J	J^{π} : E2 γ to $(25/2)^+$; band assignment.
5243.4? ^h 6	$(27/2^{-})$		D		
5497.4 [°] 7	$(29/2)^{-}$	0.236 ps 55	DE	J	J ^{π} : E2 γ to (25/2) ⁻ ; band assignment.
5645.2 ^e 7	$(29/2^{-})$		DE	J	J^{π} : (E2) γ to (25/2 ⁻); band assignment.
5932.5? ⁱ 8	$(29/2^{-})$		D		
6259.4 ^b 8	$(31/2^{-})$		D	J	
6565.3 ^{&} 10	$(33/2^+)$		DE	J	J^{π} : (E2) γ to (29/2) ⁺ ; band assignment.
6683.5? ^h 8	$(31/2^{-})$		D		
6794.4 ^c 8	$(33/2)^{-}$	<0.243 ps	DE	J	J ^{π} : E2 γ to (29/2) ⁻ ; band assignment.
6905.0 ^e 8	$(33/2^{-})$		D	J	
7521.4? ^b 9	$(35/2^{-})$		D		
8195.1 8	$(37/2^{-})$		D	J	Possible 5-quasiparticle bandhead (1993LiZR).
8240.3 ^{&} 11	$(37/2^+)$		DE	J	J^{π} : (E2) γ to (33/2 ⁺); band assignment.
9741.1? 10	$(41/2^{-})$		D		· · · · · · · · · · · · · · · · · · ·
10027.3? ^{&} 12	$(41/2^+)$		D		
$16.4 \times 10^3 2$		7.0 MeV 2	С		E(level): GDR strength=0.90 5.

[†] Level energies quoted to the nearest keV are from (α, p) and/or $({}^{3}\text{He,d})$, if γ deexcitation has not been observed; ΔE is unstated in both reactions, but probably does not exceed ≈ 35 keV (see comments in (α, p) and $({}^{3}\text{He,d})$ data sets). The other values are from a least-squares fit to $E\gamma$, omitting 978.7 γ , 1252.8 γ , 1382.4 γ and 1554.1 γ (each of which is at least 3 σ from least-squares adjusted value) and arbitrarily assigning $\Delta E=1$ keV to $E\gamma$ values whose uncertainties are unknown.

- [‡] Values which are assigned without comment are based on band structure deduced in ${}^{68}\text{Zn}({}^{19}\text{F},\alpha 2n\gamma)$ and/or ${}^{53}\text{Cr}({}^{31}\text{P},2pn\gamma)$, combined with γ multipolarity information (from unenumerated DCO ratios in ${}^{53}\text{Cr}({}^{31}\text{P},2pn\gamma)$, or mostly unstated $\gamma(\theta)$ and γ asymmetry ratio data from ${}^{68}\text{Zn}({}^{19}\text{F},\alpha 2n\gamma)$).
- [#] π is adopted from ⁶⁸Zn(¹⁹F, α 2n γ). Opposite π was suggested in ⁵³Cr(³¹P,2pn γ) and ⁵⁵Mn(²⁹Si,2pn γ), neither of which reported the 761.4 γ which feeds the (15/2⁻) 2294 level of the near-yrast π =-, α =-1/2 band in ⁶⁸Zn(¹⁹F, α 2n γ) (that γ could plausibly have been masked by the strong 759.7 γ from the 9/2⁻ member of the π =-, α =+1/2 near-yrast band). J=19/2 is based on a definite D component in the 1472 γ feeding the 17/2⁺ member of the yrast band and a (Q) 901 γ from the (23/2⁻) 3957 level (which also feeds the 21/2⁻ and 19/2⁻ members of the 3-quasiparticle band).
- [@] From RDM in ${}^{65}Cu({}^{19}F,p2n\gamma)$ if E<2610, and from DSA in ${}^{55}Mn({}^{29}Si,2pn\gamma)$ if E≥2610, except as noted.
- [&] Band(A): π g_{9/2} α =+1/2 yrast band.
- ^{*a*} Band(B): π g_{9/2} α =-1/2 yrast band.
- ^b Band(C): $\pi = -$, $\alpha = -1/2$ band. Configuration possibly includes ($\nu g_{9/2}^2$) (1993LiZR). Connected (via a 761.4 γ to the 15/2⁻ 2294 level) to the near-yrast $\pi = -$, $\alpha = -1/2$ band in (¹⁹F, $\alpha 2n\gamma$), but assigned as an independent $\pi = +$ band in (³¹P,2pn γ). See comment on $J^{\pi}(3055$ level). In (³¹P,2pn γ), a 900 γ (different from the 900 γ connecting the 23/2 and 19/2 members of this band) feeds the 2294 level; the evaluator presumes this to be incorrect.
- ^c Band(D): Near-yrast π =- band, α =+1/2. For J≥17/2, configuration possibly includes ($\nu g_{9/2}^2$) (1993LiZR).
- ^d Band(E): Near-yrast $\pi = -$ band, $\alpha = -1/2$.

⁸¹Rb Levels (continued)

^{*e*} Band(F): $\pi = -$, $\alpha = +1/2$ yrare band. configuration possibly includes ($\pi g_{9/2}^2$) (1993LiZR).

- ^{*f*} Band(G): π =(-), α =-1/2 band.
- ^g Band(H): $\pi = -, \alpha = +1/2$ band.
- ^{*h*} Band(I): 3-quasiparticle band, $\alpha = -1/2$. Possible configuration is $(\pi g_{9/2})(\nu g_{9/2})(\nu p, f)$ (1994Do18); alternatively, $K^{\pi} = 11/2^{-1}$ band arising from odd p coupled to aligned pair of $g_{9/2}$ neutrons (1993LiZR). A 155 γ , appearing in cascade between the 61 γ and 210 γ in ⁵³Cr(³¹P,2pn γ) is absent in ⁶⁸Zn(¹⁹F, α 2n γ), and the interconnection of this band with other bands differs significantly in the two reactions.

^{*i*} Band(J): 3-quasiparticle band, $\alpha = +1/2$. See comment on signature partner band.

$\gamma(^{81}\text{Rb})$

Additional information 1. For all but 10 transitions observed in in-beam studies, ΔE is unstated by authors.

7

E _i (level)	\mathbf{J}_i^π	Eγ‡	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. ^f	δ	α^{g}	Comments
86.31	9/2+	86.3 2	100	0.0	3/2-	E3		17.66 <i>31</i>	B(E3)(W.u.)= $2.51 \times 10^{-3} 6$ $\alpha(K)=12.12 \ 20; \ \alpha(L)=4.68 \ 9; \ \alpha(M)=0.790 \ 15$ $\alpha(N)=0.0739 \ 14; \ \alpha(O)=0.000825 \ 14$ E _y : from IT decay. Mult : from subsell ratio data in ⁸¹ Rb IT decay.
153.484	5/2-	153.54 <i>3</i>	100	0.0	3/2-	(M1(+E2))	<0.5	0.061 <i>16</i>	B(M1)(W.u.)=0.026 +27-11 α (K)=0.053 13; α (L)=0.0063 19; α (M)=0.00104 31 α (N)=1.16×10 ⁻⁴ 32; α (O)=4.6×10 ⁻⁶ 10 Mult.: D from DCO ratio in ⁵⁵ Mn(²⁹ Si,2pn γ); adopted $\Delta \pi$ =no. For B(E2)(W.u.)<300, mult.=M1(+E2) with δ <0.5.
188.232	1/2-,3/2-	188.27 3	100	0.0	3/2-	[M1,E2]		0.061 34	$\alpha(K)=0.053 \ 30; \ \alpha(L)=0.007 \ 4; \ \alpha(M)=0.0011 \ 6$ $\alpha(N)=1 \ 2 \times 10^{-4} \ 7; \ \alpha(O)=4 \ 4 \times 10^{-6} \ 23$
245.273	5/2+	158.96 6	17 3	86.31	9/2+	[E2]		0.1764 25	$\alpha(K) = 0.1526 \ 21; \ \alpha(L) = 0.02008 \ 28; \ \alpha(M) = 0.00331 \ 5 \ \alpha(N) = 0.000354 \ 5; \ \alpha(O) = 1.205 \times 10^{-5} \ 17 \ Mult : if M3, BUL would require T_{1/2}(245 \ level) > 1 \ s$
		245.24 4	100 8	0.0	3/2-	[E1]		0.00697 10	$\alpha(\mathbf{K})=0.00618 \; 9; \; \alpha(\mathbf{L})=0.000666 \; 9; \; \alpha(\mathbf{M})=0.0001095 \\ I5 \\ \alpha(\mathbf{N})=1.231\times 10^{-5} \; 17; \; \alpha(\mathbf{Q})=5.17\times 10^{-7} \; 7$
301.242	(3/2)-	55.95 <i>3</i>	0.308 23	245.273	5/2+	[E1]		0.527 7	$\alpha(K) = 0.465 \ 7; \ \alpha(L) = 0.0522 \ 7; \ \alpha(M) = 0.00851 \ 12$ $\alpha(K) = 0.00926 \ 13; \ \alpha(Q) = 3.47 \times 10^{-5} \ 5$
		113.02 <i>3</i>	0.57 5	188.232	1/2-,3/2-	[M1,E2]		0.36 26	$\alpha(K) = 0.31 \ 22; \ \alpha(L) = 0.044 \ 34; \ \alpha(M) = 0.007 \ 6$ $\alpha(N) = 8 \ E - 4 \ 6; \ \alpha(Q) = 2 \ 4 \times 10^{-5} \ 16$
		147.76 3	100 3	153.484	5/2-	[M1,E2]		0.14 9	$\alpha(K) = 0.12 \ 8; \ \alpha(L) = 0.016 \ 11; \ \alpha(M) = 0.0026 \ 18 \ \alpha(N) = 2.8 \times 10^{-4} \ 19; \ \alpha(O) = 1.0 \times 10^{-5} \ 6$
		301.30 ^c 3	4.83 23	0.0	3/2-				
433.7	$(7/2^+)$	347.3 ^{6&}	100	86.31	9/2+	(M1)		0.00565 8	α (K)=0.00501 7; α (L)=0.000547 8; α (M)=9.03×10 ⁻⁵ 13
									$\alpha(N)=1.024\times10^{-5} \ 14; \ \alpha(O)=4.42\times10^{-7} \ 6$ Mult.: D from $\gamma(\theta)$ in ⁷⁹ Br($\alpha,2n\gamma$); intraband γ .
443.393	1/2 ⁽⁻⁾ ,3/2 ⁽⁻⁾	142.15 <i>3</i> 255.16 <i>3</i> 289.95 <i>5</i> 443.34 <i>4</i>	17.3 5 8.9 4 0.57 26 100 3	301.242 188.232 153.484 0.0	(3/2) ⁻ 1/2 ⁻ ,3/2 ⁻ 5/2 ⁻ 3/2 ⁻				

					Adopted Leve	els, Gammas	(continued)	
					$\gamma(^{81}$	Rb) (continu	ed)	
E _i (level)	J_i^π	${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_{f}	J_f^π	Mult. ^f	α^{g}	Comments
463.00	1/2+,3/2,5/2,7/2-	217.73 <i>4</i> 463.08 <i>17</i>	100 <i>11</i> 91 <i>16</i>	245.273 0.0	5/2 ⁺ 3/2 ⁻			
486.69	(5/2 ⁻)	332.8 ^{&}	26	153.484	5/2-			I_{γ} : from $(\alpha, 2n\gamma)$; γ is absent in ⁸¹ Sr ε decay (although it should have been observable).
		486.69 <i>6</i>	100	0.0	3/2-			E _{γ} : for presumed doublet in ε decay; see comment under ⁸¹ Sr ε decay. E γ =486.5 from ⁶⁸ Zn(¹⁹ F, α 2n γ). L _{α} : from (α xn γ)
574.737	(1/2) ⁻	131.56 <i>14</i> 386.55 <i>4</i> 421.29 <i>6</i> 574.67 <i>3</i>	0.34 21 24.4 13 14.0 10 100 3	443.393 188.232 153.484 0.0	1/2 ⁽⁻⁾ ,3/2 ⁽⁻⁾ 1/2 ⁻ ,3/2 ⁻ 5/2 ⁻ 3/2 ⁻			
512.27	7/2-	125.8 <mark>&</mark>		486.69	$(5/2^{-})$			
		458.7 <mark>&</mark>	100 [#]	153.484	5/2-	(M1+E2)	0.0037 8	α (K)=0.0033 7; α (L)=0.00036 8; α (M)=6.0×10 ⁻⁵ 14 α (N)=6.7×10 ⁻⁶ 15; α (O)=2.8×10 ⁻⁷ 5
								 Mult.: (D+Q) from DCO ratio in ⁵⁵Mn(²⁹Si,2pnγ) for intraband γ. B(M1)(W.u.)=0.0459 +48-41 if M1, B(E2)(W.u.)=269 +28-24 if E2.
		612.2 ^{&}	34 [#]	0.0	3/2-	E2	1.89×10 ⁻³ 3	B(E2)(W.u.)=21.6 36 α (K)=0.001674 23; α (L)=0.0001851 26; α (M)=3.05×10 ⁻⁵ 4 α (N)=3.43×10 ⁻⁶ 5; α (O)=1.437×10 ⁻⁷ 20 Mult.: Q from (HI,xn γ); not M2 from RUL (assuming negligible 126 γ branching from 612 level).
530.59	(5/2+)	329 ^{#h} 477.15 <i>16</i>	<9 [#] 100 <i>11</i>	301.242 153.484	(3/2) ⁻ 5/2 ⁻			I _γ : from ⁷⁹ Br(α ,2nγ) only; uncertainty 10%–50%. E _γ : from ⁸¹ Sr ε decay; in ⁷⁹ Br(α ,2nγ), a 477γ is placed from both the 631-keV level and a 1464-keV level, based on $\gamma\gamma$ -coin data.
		545 ^{#h}	45 4	86.31	$9/2^+$			
702.165	(1/2 ⁻ ,3/2)	630.576 548.655 702.149	45 4 55 3 100 4	0.0 153.484 0.0	5/2 5/2 ⁻ 3/2 ⁻			Reported in ε decay only.
709.18	(13/2)+	622.8 ^{&}	100	86.31	9/2+	E2	1.80×10 ⁻³ 3	B(E2)(W.u.)=48.3 +25-23 α (K)=0.001595 22; α (L)=0.0001762 25; α (M)=2.91×10 ⁻⁵ 4 α (N)=3.27×10 ⁻⁶ 5; α (O)=1.370×10 ⁻⁷ 19 Mult.: Q from $\gamma(\theta)$ in ⁷⁹ Br(α ,2n γ); not M2 from BUI

 ∞

$\gamma(^{81}\text{Rb})$ (continued)

E _i (level)	J_i^π	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. ^f	α^{g}	Comments
711.933	(1/2 ⁻ ,3/2,5/2 ⁺)	410.83 <i>11</i> 523.71 <i>4</i> 558.8 <i>4</i> 711.90 <i>6</i>	32 5 96 4 2.7 14 100 4	301.242 188.232 153.484 0.0	(3/2) ⁻ 1/2 ⁻ ,3/2 ⁻ 5/2 ⁻ 3/2 ⁻			
827.5	$(5/2)^+$	394 [#] 582 ^{#h}	100 [#] <34 [#]	433.7 245.273	(7/2 ⁺) 5/2 ⁺			
896.25	(7/2 ⁻)	595.1 ^{&} 742.8 ^{&} 896.2 ^{&}		301.242 153.484 0.0	(3/2) ⁻ 5/2 ⁻ 3/2 ⁻			
909.092	(3/2)-	197.32 8	2.5 7	711.933	$(1/2^-, 3/2, 5/2^+)$	[D,E2]	0.052 28	α (K)=0.045 25; α (L)=0.0055 32; α (M)=9.E-4 5 α (N)=1.0×10 ⁻⁴ 6; α (O)=3.7×10 ⁻⁶ 19
		206.98 7	8.4 8	702.165	(1/2 ⁻ ,3/2)	[D,E2]	0.044 23	α (K)=0.039 20; α (L)=0.0047 26; α (M)=8.E-4 4 α (N)=8.E-5 5; α (O)=3.2×10 ⁻⁶ 16
		422.47 <i>15</i> 465.80 <i>5</i> 607.88 <i>3</i> 663.6 <i>3</i> 720.81 <i>3</i> 909.03 <i>3</i>	10.4 <i>15</i> 34.2 <i>20</i> 38.6 <i>14</i> 2.4 <i>5</i> 100 <i>3</i> 76.7 <i>25</i>	486.69 443.393 301.242 245.273 188.232 0.0	$(5/2^{-}) 1/2^{(-)}, 3/2^{(-)} (3/2)^{-} 5/2^{+} 1/2^{-}, 3/2^{-} 3/2^{-} $			
913.15	9/2-	300.8 ^{&}	50 [#]	612.27	7/2-	(M1)	0.00805 11	B(M1)(W.u.)=0.18 +7-6 α (K)=0.00712 <i>10</i> ; α (L)=0.000781 <i>11</i> ; α (M)=0.0001290 <i>18</i> α (N)=1.462×10 ⁻⁵ <i>20</i> ; α (O)=6.31×10 ⁻⁷ <i>9</i> Mult.: D from $\gamma(\theta)$ in ⁷⁹ Br(α ,2n γ); $\Delta\pi$ =(no) from band structure.
		759.7 ^{&}	100 [#]	153.484	5/2-	E2	1.05×10 ⁻³ 2	B(E2)(W.u.)=49 +11-10 α (K)=0.000933 13; α (L)=0.0001020 14; α (M)=1.681×10 ⁻⁵ 24 α (N)=1.897×10 ⁻⁶ 27; α (O)=8.06×10 ⁻⁸ 11 Mult.: Q from $\gamma(\theta)$ in ⁷⁹ Br(α ,2n γ); not M2 from RUL.
923.02	(1/2 ⁻ ,3/2)	347.8 <i>3</i> 769.5 <i>4</i> 923.05 <i>8</i>	17 <i>15</i> 7 5 100 6	574.737 153.484 0.0	(1/2) ⁻ 5/2 ⁻ 3/2 ⁻			E_{γ} : see also comment on 347 γ from 434-keV level.
987.09	(11/2 ⁺)	278.0 ^{&}	59 [#]	709.18	(13/2)+	(M1)	0.00979 14	α(K)=0.00867 12; α(L)=0.000952 13; α(M)=0.0001573 22 α(N)=1.782×10-5 25; α(O)=7.68×10-7 11 Mult.: D from γ(θ) in 79Br(α,2nγ); Δπ=(no) from band structure.

9

					Adopted	Levels, Gan	nmas (continued)	
						$\gamma(^{81}\text{Rb})$ (con	ntinued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. ^f	α^{g}	Comments
987.09	(11/2 ⁺)	553.4 ^{&}	100#	433.7	(7/2+)	(E2)	2.53×10 ⁻³ 4	α(K)=0.002238 31; α(L)=0.0002491 35; α(M)=4.11×10-5 6 α(N)=4.60×10-6 6; α(O)=1.915×10-7 27 Mult.: stretched Q from DCO ratio in 55Mn(29Si,2pnγ); Δπ=(no) from band structure.
		900.7 ^{&}	6 [#]	86.31	9/2+	(M1+E2)	6.62×10 ⁻⁴ 27	α(K)=0.000587 23; α(L)=6.32×10-5 30; α(M)=1.04×10-5 5 α(N)=1.18×10-6 5; α(O)=5.12×10-8 17 Mult.: D+Q from γ(θ) in 79Br(α,2nγ); Δπ=(no) from band structure.
1035.3	$(11/2^+)$	326.1 ^{&}	34 [#]	709.18	$(13/2)^+$			
		948.9 ^{&}	100 [#]	86.31	9/2+			Mult=D+Q (ΔJ =1) for apparent 949 γ doublet in ⁷⁹ Br(α ,2n γ).
1061.43	$1/2^{+}$	486.69 <mark>h</mark> 6	100	574.737	$(1/2)^{-}$			E_{γ} : presumed doublet; see comment on 487 γ from 487 level.
1174.28	$(9/2^{-})$	562.1 <mark>&</mark>		612.27	7/2-			
		687.6 <mark>&</mark>		486.69	$(5/2^{-})$			
1218.9	$1/2^{(+)}, 3/2$	507.0 5	100	711.933	$(1/2^{-}, 3/2, 5/2^{+})$			
1243.63	$(1/2^+, 3/2)$	541.51 14	100 37	702.165	$(1/2^{-}, 3/2)$			
		998.6 <i>4</i>	28 10	245.273	5/2+			
		1243.0 4	29 10	0.0	3/2-			
1305.0	$(7/2, 9/2^+)$	871 [#]	100	433.7	$(7/2^+)$			
	(2.(2) -	1060 [#]		245.273	5/2+			
1381.907	$(3/2)^{-}$	670.4 3	3.6.6	711.933	$(1/2^-, 3/2, 5/2^+)$			
		895 10 25	2.85	486 69	(1/2) $(5/2^{-})$			
		938.45.3	100.3	443.393	$1/2^{(-)}, 3/2^{(-)}$			
		1080.72 11	16.6 8	301.242	$(3/2)^{-}$			
		1136.63 11	6.7 5	245.273	5/2+			
		1193.76 5	20.6 9	188.232	1/2-,3/2-			
		1382.44 7 8	13.7 7	0.0	3/2-			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=1381.894.
1416.42	$11/2^{-}$	503.2 ^{&}	10 [#]	913.15	9/2-			
		804.2 ^{&}	100#	612.27	7/2-	E2	9.11×10 ⁻⁴ 13	B(E2)(W.u.)=71 +11-9 α (K)=0.000807 11; α (L)=8.79×10 ⁻⁵ 12; α (M)=1.449×10 ⁻⁵ 20
								α (N)=1.636×10 ⁻⁶ 23; α (O)=6.97×10 ⁻⁸ 10 Mult.: Q from $\gamma(\theta)$ in ⁷⁹ Br(α ,2n γ); not M2 from RUL.
1464.1		477 [#]	100	987.09	$(11/2^+)$			E_{γ} : for doublet; see comment on 477 γ from 631 level.
1513.11	(1/2,3/2)	811.01 12	100 11	702.165	$(1/2^-, 3/2)$			· · ·

From ENSDF

 $^{81}_{37}$ Rb₄₄-10

					Adopted Leve	els, Gamma	as (continued)	
					$\gamma(^{81})$	Rb) (contin	ued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ [‡]	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. ^f	α^{g}	Comments
1513.11	(1/2,3/2)	1211.2 ^d 4	41 8	301.242	(3/2)-			
		1324.7 4	70 10	188.232	1/2-,3/2-			
1553.677	$1/2^{-}, 3/2^{-}$	644.56 17	34 4	909.092	$(3/2)^{-}$ $(1/2^{-} 2/2 5/2^{+})$			
		851 39 6	50 5 100 4	702 165	$(1/2^{-}, 3/2, 3/2^{+})$ $(1/2^{-}, 3/2)$			
		978 66 7	63 /	574 737	$(1/2^{-}, 3/2)^{-}$			\mathbf{E} : uncertainty multiplied by a factor of 2 in the
		978.00 7	05 4	574.757	(1/2)			E_{γ} . uncertainty multiplied by a factor of 2 in the fitting: level-energy difference=978.93.
		1066.96 8	64 4	486.69	$(5/2^{-})$			initiality, level energy anterence ">, or > +
		1090.75 17	26.5 27	463.00	1/2+,3/2,5/2,7/2-			
		1110.26 10	48 <i>3</i>	443.393	$1/2^{(-)}, 3/2^{(-)}$			
		1252.82 [†] 10	53 <i>3</i>	301.242	(3/2) ⁻			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=1252.42.
		1365.68 22	22.1 24	188.232	1/2-,3/2-			
		1400.33 6	70 4	153.484	5/2-			
		1554.15 [†] 11	46 <i>3</i>	0.0	3/2-			E_{γ} : uncertainty multiplied by a factor of 2 in the fitting; level-energy difference=1553.661.
1584.23	$(17/2)^+$	875.1 ^{&}	100	709.18	$(13/2)^+$	E2	7.37×10 ⁻⁴ 10	B(E2)(W.u.)=63 +6-5 α (K)=0.000653 9; α (L)=7.09×10 ⁻⁵ 10;
								$\alpha(M)=1.169\times10^{-5}$ 16
								$\alpha(N) = 1.322 \times 10^{-6} \ 19; \ \alpha(O) = 5.65 \times 10^{-6} \ 8$
								Mult.: Q from $\gamma(\theta)$ in $\gamma^{2}Br(\alpha,2n\gamma)$; not M2 from
1596.26	$(11/2^{-})$	683 1 <mark>&</mark>		913 15	9/2-			KOL.
1570.20	(11/2)	700.1		806.25	$(7/2^{-})$			
1738 71	13/2-	322.3	o#	1416 42	(1/2)	(M1)	0.00679.10	$B(M1)(W_{11}) = 0.0163 \pm 36 - 33$
1750.71	15/2	322.3)	1410.42	11/2	(1411)	0.00079 10	$\alpha(\text{K})=0.00601\ 8;\ \alpha(\text{L})=0.000658\ 9;\ \alpha(\text{M})=0.0001086$
								$\alpha(N)=1.231\times10^{-5}$ 17; $\alpha(O)=5.32\times10^{-7}$ 7
								Mult.: D from DCO ratio in 55 Mn(29 Si,2pn γ) for intraband γ .
		825.6 <mark>&</mark>	100 [#]	913.15	9/2-	E2	8.52×10 ⁻⁴ 12	B(E2)(W.u.)=19.5 +24-19
								α (K)=0.000755 <i>11</i> ; α (L)=8.22×10 ⁻⁵ <i>12</i> ; α (M)=1.354×10 ⁻⁵ <i>19</i>
								$\alpha(N)=1.530\times10^{-6}\ 21;\ \alpha(O)=6.53\times10^{-8}\ 9$
								Mult.: Q from $\gamma(\theta)$ in (¹⁶ O,p2n γ); not M2 from RUL.
1774.8	(15/2+)	787.7 ^{&}	39 [#]	987.09	(11/2 ⁺)	(E2)	9.60×10 ⁻⁴ 13	α (K)=0.000850 <i>12</i> ; α (L)=9.27×10 ⁻⁵ <i>13</i> ; α (M)=1.529×10 ⁻⁵ <i>21</i>

From ENSDF

					Adop	ted Levels	, Gammas (conti	nued)
						$\gamma(^{81}\text{Rt})$	b) (continued)	
E _i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_{f}	J_f^π	Mult. ^f	α^{g}	Comments
1774.8	(15/2+)	1065.8 ^{&}	100#	709.18	(13/2)+	(M1)	4.46×10 ⁻⁴ 6	$\alpha(N)=1.726\times10^{-6} 24; \ \alpha(O)=7.34\times10^{-8} 10$ Mult.: Q from $\gamma(\theta)$ in ⁷⁹ Br($\alpha, 2n\gamma$) for intraband γ . $\alpha(K)=0.000396 6; \ \alpha(L)=4.22\times10^{-5} 6; \ \alpha(M)=6.96\times10^{-6} 10$ $\alpha(N)=7.93\times10^{-7} 11; \ \alpha(O)=3.47\times10^{-8} 5$ Mult : D from $\gamma(\theta)$ in ⁷⁹ Br($\alpha, 2n\gamma$) for intraband γ .
1804.36	(1/2,3/2)	1317.54 24 1360.6 3 1502.5 7	48 <i>12</i> 95 <i>13</i> 42 <i>12</i>	486.69 443.393 301.242	$(5/2^{-})$ $1/2^{(-)}, 3/2^{(-)}$ $(3/2)^{-}$ $1/2^{-}, 3/2^{-}$			Nutrie D from $y(0)$ in $D(a,2hy)$ for intraband y.
1848.16	(1/2+,3/2)	1010.31 17 1273.45 19 1603.0 7 1659.6 5	100 <i>13</i> 100 <i>11</i> 41 9 14 5	574.737 245.273 188.232	$(1/2)^{-}$ $(1/2)^{-}$ $5/2^{+}$ $1/2^{-}, 3/2^{-}$			
1919.9	(15/2+)	335.6 ^{&h} 932.8 ^{&}	8.5 62 [#]	1584.23 987.09	$(17/2)^+$ $(11/2^+)$	(E2)	6.32×10 ⁻⁴ 9	$\alpha(K)=0.000560 \ 8; \ \alpha(L)=6.06\times10^{-5} \ 8; \ \alpha(M)=9.99\times10^{-6} \ 14$
		1210.8 ^{&}	100 [#]	709.18	(13/2)+	(M1)	3.51×10 ⁻⁴ 5	
1967.69 2165.4	(13/2 ⁻) (1/2 ⁺)	551.3 ^{&} 793.5 ^{&} 1533.6 7 1679.6 7	26 15 98 15	1416.42 1174.28 630.59 486.69	11/2 ⁻ (9/2 ⁻) (5/2 ⁺) (5/2 ⁻)			
2294.50	(15/2 ⁻)	1722.2 7 878.0 ^{&}	100 15	443.393 1416.42	1/2 ⁽⁻⁾ ,3/2 ⁽⁻⁾ 11/2 ⁻	(E2)	7.31×10 ⁻⁴ 10	$\alpha(K)=0.000648 \ 9; \ \alpha(L)=7.03\times10^{-5} \ 10; \ \alpha(M)=1.159\times10^{-5} \ 16 \ \alpha(N)=1.311\times10^{-6} \ 18; \ \alpha(O)=5.61\times10^{-8} \ 8 \ Mult: O \ from DCO \ ratio in \ {}^{55}Mn({}^{29}Si\ 2nn\chi) \ for \ intrahand \ \chi$
2395.2 2425.68 2575.7	(15/2 ⁻) (13/2 ⁻) 17/2 ⁻	1585.4 ^{&} 798.9 ^{&} 829.5 ^{&} 281.3 ^{&}	100 100	709.18 1596.26 1596.26 2294.50	$(13/2)^+$ $(11/2^-)$ $(11/2^-)$ $(15/2^-)$			Reported only in ${}^{68}Zn({}^{19}F,\alpha 2n\gamma)$.
		655.8 ^{&}		1919.9	$(15/2^+)$	[E1]	5.55×10 ⁻⁴ 8	$\alpha(K)=0.000492$ 7; $\alpha(L)=5.25\times10^{-5}$ 7; $\alpha(M)=8.64\times10^{-6}$ 12 $\alpha(N)=9.80\times10^{-7}$ 14; $\alpha(O)=4.23\times10^{-8}$ 6
		836.9 ^{&}	е	1738.71	13/2-	E2	8.24×10 ⁻⁴ 12	$\alpha(K)=0.000730 \ 10; \ \alpha(L)=7.94\times10^{-5} \ 11; \ \alpha(M)=1.308\times10^{-5} \ 18 \ \alpha(N)=1.478\times10^{-6} \ 21; \ \alpha(O)=6.31\times10^{-8} \ 9$

						Adopt	ted Levels, Gam	nmas (continued)
γ ⁽⁸¹ Rb) (continued)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. ^f	α^{g}	Comments
								Mult.: Q from $\gamma(\theta)$ in ⁷⁹ Br(α ,2n γ); M2 ruled out by RUL; apparent band structure.
2599.7		861.1 <mark>&</mark>		1738.71	$13/2^{-}$			
		1890.5 <mark>&</mark>		709.18	$(13/2)^+$			
2608.1	$(21/2)^+$	1024.0 <mark>&</mark>	100	1584.23	$(17/2)^+$	E2	5.07×10^{-4} 7	B(E2)(W.u.)=71 +15-11
								$\alpha(K)=0.000450 \ 6; \ \alpha(L)=4.85\times10^{-5} \ 7; \ \alpha(M)=8.00\times10^{-6} \ 11 \ \alpha(N)=9.06\times10^{-7} \ 13; \ \alpha(O)=3.90\times10^{-8} \ 5$
								Mult.: Q from $\gamma(\theta)$ in ⁷⁹ Br(α ,2n γ); not M2 from RUL.
2636.18	$(15/2^{-})$	210.5 ^{&} 1		2425.68	$(13/2^{-})$	D		γ seen in ⁵³ Cr(³¹ P,2pn γ) also, but placed differently there.
		0						Mult.: from $\gamma(\theta)$ in 68 Zn(19 F, $\alpha 2n\gamma$).
		341.6 ^{&}		2294.50	$(15/2^{-})$			
		1926.4 ^{&} 5	е	709.18	$(13/2)^+$	D+Q		Mult.: from $\gamma(\theta)$ and γ asymmetry in 68 Zn(19 F, $\alpha 2n\gamma$).
2656.33	$17/2^{-}$	361.8		2294.50	$(15/2^{-})$			361.3 γ was reported in ⁵³ Cr(³¹ P,2pn γ) but placed elsewhere.
		917.6 ^{&} 2	е	1738.71	13/2-	Q		Mult.: from $\gamma(\theta)$ in 68 Zn(19 F, α 2n γ).
2697.20	$17/2^{-}$	61.0 ^X 1		2636.18	$(15/2^{-})$	D		Mult.: from $\gamma(\theta)$ in 68 Zn(19 F, α 2n γ).
		97.5 ^{&}		2599.7				
		402.7		2294.50	$(15/2^{-})$			
		729.6		1967.69	$(13/2^{-})$			γ was reported in ⁵³ Cr(³¹ P,2pn γ), but placed from 3428 level there.
		922.4 ^{&}		1774.8	$(15/2^+)$			
		958.5 ^{&} 2		1738.71	$13/2^{-}$	Q		Mult.: from $\gamma(\theta)$ and γ asymmetry in 68 Zn(19 F, $\alpha 2n\gamma$).
		1113.1		1584.23	$(17/2)^+$			
2710.4	$(19/2^+)$	935.7 ^{&}		1774.8	$(15/2^+)$			
		1126.0		1584.23	$(17/2)^+$			
2760.0	$(17/2^{-})$	792.4		1967.69	$(13/2^{-})$			
		1021.3		1738.71	$13/2^{-}$			
2997.73	$(19/2^{-})$	300.5 2	100	2697.20	$17/2^{-}$	D		Mult.: from γ asymmetry in 68 Zn(19 F, $\alpha 2n\gamma$).
3055.84	(19/2 ⁻)	761.4 ^{&}		2294.50	(15/2 ⁻)			Reported in 68 Zn(19 F, $\alpha 2n\gamma$) only. Possibly masked by strong 760 γ in other reaction studies.
		1471.6 ^{&} 3	е	1584.23	$(17/2)^+$	D		Mult.: from DCO ratio in 55 Mn(29 Si,2pn γ).
3069.5		461.5 ^{&}		2608.1	$(21/2)^+$			
		1485.2 ^{&}		1584.23	$(17/2)^+$			
3194.5	$(19/2^{-})$	619 [@]		2575.7	$17/2^{-}$			
		900.0 [@]		2294.50	$(15/2^{-})$			
3286.9	$(19/2^{-})$	891.7 ^{&}	100	2395.2	$(15/2^{-})$			

From ENSDF

					Add	opted Leve	els, Gammas (cor	ntinued)
$\gamma(^{81}\text{Rb})$ (continued)								
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\ddagger}	Iγ [‡]	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^f	α^{g}	Comments
3295.2	(21/2) ⁻	239.4 ^{&} 719.6 ^{&}	е	3055.84 2575.7	(19/2 ⁻) 17/2 ⁻	E2	1.22×10 ⁻³ 2	Reported in ${}^{68}\text{Zn}({}^{19}\text{F},\alpha 2n\gamma)$ only. $\alpha(\text{K})=0.001076 \ I5; \ \alpha(\text{L})=0.0001179 \ I7; \ \alpha(\text{M})=1.944\times10^{-5} \ 27 \ \alpha(\text{N})=2.191\times10^{-6} \ 31; \ \alpha(\text{O})=9.28\times10^{-8} \ I3$ Mult.: Q from ${}^{79}\text{Br}(\alpha,2n\gamma)$ for intraband γ , M2 ruled out by BUU
3427.6	(21/2 ⁻)	429.8 ^{&} 2	100	2997.73	(19/2 ⁻)	(M1)	0.00339 5	B(M1)(W.u.)=0.27 +13-7 α (K)=0.00300 4; α (L)=0.000326 5; α (M)=5.38×10 ⁻⁵ 8 α (N)=6.10×10 ⁻⁶ 9; α (O)=2.65×10 ⁻⁷ 4 Mult.: D from γ asymmetry in ⁶⁸ Zn(¹⁹ F,α2nγ); Δ π=(no) from level scheme.
3496.9	21/2-	736.9 ^{&}		2760.0	(17/2 ⁻)	[E2]	$1.14 \times 10^{-3} 2$	α (K)=0.001011 <i>14</i> ; α (L)=0.0001106 <i>15</i> ; α (M)=1.823×10 ⁻⁵ <i>26</i> α (N)=2.056×10 ⁻⁶ <i>29</i> ; α (O)=8.72×10 ⁻⁸ <i>12</i>
		840.5 ^{&}	е	2656.33	17/2-	(E2)	8.15×10 ⁻⁴ 11	$\alpha(K)=0.000722 \ 10; \ \alpha(L)=7.85\times10^{-5} \ 11; \ \alpha(M)=1.294\times10^{-5} \ 18 \ \alpha(N)=1.462\times10^{-6} \ 20; \ \alpha(O)=6.24\times10^{-8} \ 9 \ Mult.: stretched Q from DCO ratio in \ ^{55}Mn(^{29}Si,2pn\gamma) for intraband \alpha$
3665.7	(19/2,21/2,23/2)	596.2 ^{&}		3069.5				initabalid y.
		1057.6 <mark>&</mark>		2608.1	$(21/2)^+$	D		Mult.: from DCO ratio in 55 Mn(29 Si,2pn γ).
3765.8	(25/2)+	1157.7 ^{&}	100	2608.1	(21/2)+	E2	3.88×10 ⁻⁴ 5	B(E2)(W.u.)=79 +21-14 α (K)=0.000341 5; α (L)=3.66×10 ⁻⁵ 5; α (M)=6.04×10 ⁻⁶ 8 α (N)=6.85×10 ⁻⁷ 10; α (O)=2.96×10 ⁻⁸ 4; α (IPF)=3.45×10 ⁻⁶ 5 Mult.: Q from DCO ratio in ⁵⁵ Mn(²⁹ Si,2pn γ); not M2 from RUL.
3956.4	(23/2 ⁻)	528.8 <mark>&</mark>		3427.6	$(21/2^{-})$			
		900.6 ^{&} 2 958.6 ^{&}		3055.84 2997.73	(19/2 ⁻) (19/2 ⁻)	(Q)		Mult.: (Q) from γ asymmetry in ${}^{68}Zn({}^{19}F,\alpha 2n\gamma)$. Reported in ${}^{68}Zn({}^{19}F,\alpha 2n\gamma)$ only, where a (presumably different) 958.5 γ (also present in ${}^{53}Cr({}^{31}P,2pn\gamma)$) appears in cascade with this γ .
		1348.4 <mark>&</mark> <i>3</i>	е	2608.1	$(21/2)^+$	D		Mult.: from γ asymmetry in 68 Zn(19 F, $\alpha 2n\gamma$).
3993.3	(23/2 ⁻)	565.6 ^{&} 995.7 ^{&}	100	3427.6 2997.73	(21/2 ⁻) (19/2 ⁻)			
4317.3	(25/2)-	1022.1 ^{&}	100	3295.2	(21/2)-	E2	5.09×10 ⁻⁴ 7	B(E2)(W.u.)=97 +25-16 α (K)=0.000452 6; α (L)=4.87×10 ⁻⁵ 7; α (M)=8.03×10 ⁻⁶ 11 α (N)=9.10×10 ⁻⁷ 13; α (O)=3.92×10 ⁻⁸ 5 Mult.: Q from DCO ratio in ⁵⁵ Mn(²⁹ Si,2pn γ); not M2 from RUL.

Adopted Levels, Gammas (continued)									
$\gamma(^{81}\text{Rb})$ (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. ^f	α^{g}	Comments	
4496.5	(25/2 ⁻)	999.5 ^{&}	100	3496.9	21/2-	(E2)	5.37×10 ⁻⁴ 8	$\alpha(K)=0.000476\ 7;\ \alpha(L)=5.14\times10^{-5}\ 7;\ \alpha(M)=8.46\times10^{-6}\ 12$ $\alpha(N)=9.59\times10^{-7}\ 13;\ \alpha(O)=4.12\times10^{-8}\ 6$ Mult.: Q from DCO ratio in ${}^{55}Mn({}^{29}Si,2pn\gamma);\ intraband transition.$	
4591.4	$(25/2^{-})$	598.1 [@]		3993.3	$(23/2^{-})$				
5062.2	(27/2 ⁻)	1105.8 ^{&}	100	3956.4	(23/2 ⁻)	[E2]	4.27×10 ⁻⁴ 6	B(E2)(W.u.)=34 +13-8 α (K)=0.000378 5; α (L)=4.06×10 ⁻⁵ 6; α (M)=6.70×10 ⁻⁶ 9 α (N)=7.59×10 ⁻⁷ 11; α (O)=3.28×10 ⁻⁸ 5; α (IPF)=8.34×10 ⁻⁷ 12	
5072.3	(29/2)+	1306.5 ^{&}	100	3765.8	(25/2)+	E2	3.26×10 ⁻⁴ 5	α (K)=0.000263 4; α (L)=2.82×10 ⁻⁵ 4; α (M)=4.64×10 ⁻⁶ 6 α (N)=5.27×10 ⁻⁷ 7; α (O)=2.287×10 ⁻⁸ 32; α (IPF)=2.90×10 ⁻⁵ 4 Mult.: Q from DCO ratio in ⁵⁵ Mn(²⁹ Si,2pn γ); not M2 from RUL.	
5243.4?	$(27/2^{-})$	652.1 ^{ah}		4591.4	$(25/2^{-})$				
		1250.1 ^{ah}		3993.3	$(23/2^{-})$				
5497.4	(29/2)-	1180.2 ^{&}	100	4317.3	(25/2)-	E2	3.75×10 ⁻⁴ 5	B(E2)(W.u.)=50 +15-10 α (K)=0.000327 5; α (L)=3.51×10 ⁻⁵ 5; α (M)=5.79×10 ⁻⁶ 8 α (N)=6.56×10 ⁻⁷ 9; α (O)=2.84×10 ⁻⁸ 4; α (IPF)=5.63×10 ⁻⁶ 8 Mult.: Q from DCO ratio in ⁵⁵ Mn(²⁹ Si,2pn γ); not M2 from RUL.	
5645.2	(29/2 ⁻)	1148.6 ^{&}	100	4496.5	(25/2 ⁻)	(E2)	3.94×10 ⁻⁴ 6	α (K)=0.000347 5; α (L)=3.73×10 ⁻⁵ 5; α (M)=6.15×10 ⁻⁶ 9 α (N)=6.97×10 ⁻⁷ 10; α (O)=3.01×10 ⁻⁸ 4; α (IPF)=2.78×10 ⁻⁶ 4 Mult.: Q from DCO ratio in ⁵⁵ Mn(²⁹ Si,2pn γ); intraband transition.	
5932.5?	(29/2 ⁻)	689 ^{ah} 1341.1 ^{ah}		5243.4? 4591.4	(27/2 ⁻) (25/2 ⁻)				
6259.4	$(31/2^{-})$	1197.1	100	5062.2	$(27/2^{-})$				
6565.3	(33/2+)	1493.0 &	100	5072.3	(29/2)+	(E2)	$3.08 \times 10^{-4} 4$	$\alpha(K)=0.0002003\ 28;\ \alpha(L)=2.134\times10^{-5}\ 30;\ \alpha(M)=3.51\times10^{-6}\ 5$ $\alpha(N)=3.99\times10^{-7}\ 6;\ \alpha(O)=1.739\times10^{-8}\ 24;\ \alpha(IPF)=8.20\times10^{-5}\ 11$ Mult.: (Q) from DCO ratio in ⁵⁵ Mn(²⁹ Si,2pn γ) for intraband γ .	
6683.5?	$(31/2^{-})$	1440.0 ^{ah}	100	5243.4?	$(27/2^{-})$				
6794.4	(33/2) ⁻	1297.0 ^{&}	100	5497.4	(29/2) ⁻	E2	3.28×10 ⁻⁴ 5	$\alpha(K)=0.000267 \ 4; \ \alpha(L)=2.86\times10^{-5} \ 4; \ \alpha(M)=4.71\times10^{-6} \ 7$ $\alpha(N)=5.35\times10^{-7} \ 7; \ \alpha(O)=2.322\times10^{-8} \ 33; \ \alpha(IPF)=2.68\times10^{-5} \ 4$ Mult.: O from DCO ratio in $^{55}Mn(^{29}Si.2pn\gamma)$; not M2 from RUL.	
6905.0	$(33/2^{-})$	1259.8	100	5645.2	$(29/2^{-})$				
7521.4?	$(35/2^{-})$	1262.0 ^{ah}	100	6259.4	$(31/2^{-})$				
8195.1	$(37/2^{-})$	1290.0 <i>ah</i>		6905.0	$(33/2^{-})$				
	/	1400.8 [@]		6794.4	$(33/2)^{-}$			E_{γ} : other: 1397 (¹⁹ F, $\alpha 2n\gamma$).	
8240.3	(37/2 ⁺)	1675.0 [@]	100	6565.3	(33/2 ⁺)	(E2)	$3.37 \times 10^{-4} 5$	α (K)=0.0001597 22; α (L)=1.697×10 ⁻⁵ 24; α (M)=2.79×10 ⁻⁶ 4 α (N)=3.18×10 ⁻⁷ 4; α (O)=1.387×10 ⁻⁸ 19; α (IPF)=0.0001576 22	

From ENSDF

Adopted	Levels,	Gammas (continued)

$\gamma(^{81}\text{Rb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${E_{\gamma}}^{\ddagger}$	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments				
						E_{γ} : others: 1677 (¹⁹ F, $\alpha 2n\gamma$), 1674 (²⁹ Si,2pn γ).				
						Mult.: Q from DCO ratio in 55 Mn(29 Si,2pn γ) for intraband γ .				
9741.1?	$(41/2^{-})$	1546.0 ^{ah}	100	8195.1	$(37/2^{-})$					
10027.3?	$(41/2^+)$	1787.0 ^{ah}	100	8240.3	$(37/2^+)$					
[†] Poor fit:	[†] Poor fit: uncertainty multiplied by a factor in the fitting									
[†] From ⁸¹ Sr. c. decay, excent as noted										
# From $^{79}\text{Br}(\alpha, 2n\alpha)$ $^{68}\text{Tn}(^{16}\text{O}, n2n\alpha)$ For Ly uncertainty $10\% - 50\%$ in $^{79}\text{Br}(\alpha, 2n\alpha)$										
$\stackrel{\text{(a,2i)}}{=} \frac{53}{\Gamma_r(^{31}D_{2nno})} = \frac{53}{\Gamma_r(^{$										
From $Cr(r,2pry)$. & Errom $687n(19E,2pry)$										
$\frac{1}{2} \Gamma(0) = \frac{1}{2} L_{1} (\frac{1}{2} \Gamma, (\frac{1}{2} \ln \gamma)).$										
$\frac{b}{247}$ 247 24 describes this level in (c. 2ac) based on us as in determined that the 002 level in $\frac{81}{247}$ by describes the 002 level in $\frac{81}{247}$ by describes the 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{1}{247}$ by describes the 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{1}{247}$ by describes the 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{1}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{1}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}{247}$ by describes the observe but the state of 002 level in $\frac{81}$										
547.57 deexcites this level in (α , $2\pi\gamma$), based on $\gamma\gamma$ coin data; a 547.8γ deexcites the 925 level in -57 ε decay, but the stronger 923 γ deexciting that level is										
						, assumes that different 5477 lines are observed in the two reactions.				
γ 301.30y deexcites this level in ε decay; 300./ γ deexcites 913 level in in-beam studies, based on $\gamma\gamma$ -coin information. Evaluator presumes that these are different γ										
rays since the / 59γ , which also deexcites the 913 level in in-beam studies, is absent in ε decay.										
"This γ from "Sr ε decay presumably differs from the 1211 γ deexciting the 1920-keV level in (α ,2n γ) (placement based on $\gamma\gamma$ -coin data) since the 932 γ , which										
also deex	also deexcites that level in $(\alpha, 2n\gamma)$, is absent in Rb ε decay.									
^{<i>e</i>} Based on transition line width in level scheme drawing for ${}^{68}Zn({}^{19}F,\alpha 2n\gamma)$, ${}^{79}Br(\alpha,2n\gamma)$ E=27 MeV (fig. 4 of 1994Do18), this γ is the strongest among several										
deexciting its parent level.										
^J The transitions designated as "Q", here or in comments, are stretched transitions.										

16

^g Additional information 2.
^h Placement of transition in the level scheme is uncertain.

 $^{81}_{37}\text{Rb}_{44}$ -16

 $^{81}_{37}$ Rb₄₄

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{81}_{37} Rb_{44}$

 $^{81}_{37}$ Rb₄₄

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) $1_{30}^{(2)}$ (3/2)-1381.907 | 007 0307 | 000 | (7/2,9/2+) 1305.0 (1/2+,3/2) 1243.63 1/2(+),3/2 1218.9 1 1 -6.6 6.6 $(9/2^{-})$ 1174.28 1 ⁴⁸6.69 100 $= \begin{bmatrix} 3n_{2} \\ 3n_{2} \\ 3n_{2} \\ 2n_{1} \\ n_{2} \\ n_{1} \\ n_{2} \\ n_{2$ 1 948.9 1 328.9 1 32.9 1 32 $\frac{1/2^+}{(11/2^+)}$ 1061.43 1 1 1035.3 1 $(11/2^+)$ 987.09 (1/2-,3/2) 923.02 T. 1 9/2-(3/2) 6. K. S. 913.15 1.46 ps 21 909.092 (7/2-) 896.25 $(1/2^-, 3/2, 5/2^+)$ 711.933 6.0 ps 3 $(13/2)^+$ V ۲ 709.18 (1/2-,3/2) 702.165 7/2-612.27 3.7 ps 3 ÷ (1/2)-T 574.737 ¥ $(5/2^{-})$ 486.69 1 $1/2^{(-)}, 3/2^{(-)}$ 443.393 $(7/2^+)$ ¥ ŧ 433.7 (3/2)-301.242 5/2+ 245.273 $1/2^{-}, 3/2^{-}$ 188.232 5/2 153.484 0.21 ns 10 9/2+ 86.31 30.5 min 3 0.0 4.571 h 4 3/2-

 $^{81}_{37}$ Rb $_{44}$

Adopted Levels, Gammas

 $^{81}_{37}$ Rb₄₄

 $^{81}_{37} Rb_{44}$