⁷⁹Br(α ,2n γ),⁶⁸Zn(¹⁶O,p2n γ) 1976Fr10

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024				

⁸¹Rb Levels

Additional $(\alpha, 2n\gamma)$ data are included with the [⁶⁸Zn(¹⁹F, α 2n γ), ⁷⁹Br($\alpha, 2n\gamma$) E=27 MeV] data set.

 $E\alpha = 22.5$ MeV: 98.6% ⁷⁹Br target; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coin, $\gamma(\theta)$ at 7 angles between 53° and 148°; Ge(Li) (resolution 2.3-2.5) keV for $E_{\gamma}=1.33$ MeV), coin time resolution of 20 ns.

 $E(^{16}O)=52$ MeV: enriched ⁶⁸Zn target; measured $E\gamma$, $I\gamma$, $\gamma(\theta)$ at 6 angles between -30° and 105° .

Data quoted here are from $(\alpha, 2n\gamma)$ reaction (except as noted); the $({}^{16}O, p2n\gamma)$ data are, in general, consistent but less precise (1976Fr10).

						_	
E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}	E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$
0	3/2 ^{-#}	612.5	7/2-	1174.6		2295.6?	
86.2	9/2+#	630.7		1305?		2576.6 15	$(17/2^{-})$
153.7	5/2 ^{-#}	709.1	$13/2^{+}$	1416.6	$(11/2^{-})$	2608.1	$21/2^{+}$
245.4		828.1		1464.3		3295.6	$(21/2^{-})$
301.7		913.6	9/2-	1584.1	$17/2^{+}$	3765.1?	
434.1	$7/2^+, 11/2^+$	922.8?		1739.6	$(13/2^{-})$		
462.7		987.3	$11/2^{+}$	1774.2	$(11/2^+, 15/2^+)$		
486.8		1035.2		1919.7	$(11/2^+, 15/2^+)$		

[†] From a least-squares fit to E γ assuming $\Delta E=0.5$ keV for for all γ rays and omitting questionable placements, except for levels with all questionable γ .

[‡] Authors' values. Based on $\gamma(\theta)$, I γ and (HI,xn γ) branching systematics, assuming J^{π} from Adopted Levels for g.s., 86 level, 154 level.

From Adopted Levels.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
(86.3)		86.2	9/2+	0	3/2-		
148	9.0	301.7		153.7	5/2-		$A_2 = +0.02 4; A_4 = +0.02 4$
154	100 10	153.7	5/2-	0	3/2-	D(+Q)	$A_2 = -0.06 \ l; A_4 = -0.02 \ l$
159	1.3	245.4		86.2	9/2+		
217 [@]	12.2 [@]	462.7		245.4			
245 [@]	43 [@]	245.4		0	$3/2^{-}$		
278	19	987.3	$11/2^{+}$	709.1	$13/2^{+}$	D	$A_2 = -0.24 \ 3; \ A_4 = -0.03 \ 3$
301	16	913.6	9/2-	612.5	7/2-	D	$A_2 = -0.26 \ 3; \ A_4 = -0.09 \ 4$
323	2.6	1739.6	$(13/2^{-})$	1416.6	$(11/2^{-})$		
326	5.8	1035.2		709.1	$13/2^{+}$		A ₂ =+0.26 11; A ₄ =-0.06 13
329 ^a	<1	630.7		301.7			E_{γ} : seen only in coincidence spectra.
333	2.1	486.8		153.7	5/2-		
336 <mark>a</mark>	1.1	1919.7	$(11/2^+, 15/2^+)$	1584.1	$17/2^{+}$		
348	34	434.1	$7/2^+, 11/2^+$	86.2	9/2+	D	$A_2 = -0.25 2; A_4 = -0.03 2$
394	2.9	828.1		434.1	7/2+,11/2+		
459	32	612.5	7/2-	153.7	5/2-		$A_2 = +0.17 2; A_4 = -0.01 2$
463	4.0	462.7		0	3/2-		$A_2 = +0.16 8; A_4 = -0.02 10$
477 <mark>&</mark>	11.2 <mark>&</mark>	630.7		153.7	5/2-		
477 <mark>&</mark>	11.2 <mark>&</mark>	1464.3		987.3	$11/2^{+}$		
487	8.1	486.8		0	3/2-		

$\gamma(^{81}\text{Rb})$

Continued on next page (footnotes at end of table)

⁷⁹Br(α,2nγ),⁶⁸Zn(¹⁶O,p2nγ) **1976Fr10** (continued)

$\gamma(^{81}\text{Rb})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	Comments
489 ^a		922.8?		434.1	7/2+,11/2+		E_{γ} : shown only in drawing. Not adopted by the evaluator.
503 545 ^a	1.6	1416.6 630.7	$(11/2^{-})$	913.6 86.2	9/2 ⁻ 9/2 ⁺		E_{γ} : from level scheme only.
553 [@]	32 [@]	987.3	$11/2^{+}$	434.1	7/2+,11/2+		
562 [@]	11 [@]	1174.6		612.5	7/2-		
582 ^a	<1	828.1		245.4			E_{γ} : seen only in coincidence spectra.
612	11	612.5	7/2-	0	3/2-	Q	$A_2 = +0.38 \ 3; \ A_4 = -0.02 \ 3$
623	116 12	709.1	$13/2^{+}$	86.2	$9/2^{+}$	Q	$A_2 = +0.35 2; A_4 = -0.08 2$
677 ^a		922.8?		245.4			E_{γ} : shown only in drawing. Not adopted by the evaluator.
688		1174.6		486.8			E_{γ} : shown only in drawing.
719	3.2	3295.6	$(21/2^{-})$	2576.6	$(17/2^{-})$	Q	$A_2 = +0.26 \ 10; \ A_4 = -0.21 \ 14$
760	32	913.6	9/2-	153.7	5/2-	Q	$A_2 = +0.30 2; A_4 = -0.09 3$
787	7.1	1774.2	$(11/2^+, 15/2^+)$	987.3	$11/2^{+}$	Q	$A_2 = +0.22 4; A_4 = -0.07 5$
804	16	1416.6	$(11/2^{-})$	612.5	7/2-	Q	$A_2 = +0.24 5; A_4 = -0.19 7$
826 [@]	30 [@]	1739.6	$(13/2^{-})$	913.6	9/2-	Q	$A_2 = +0.14 2; A_4 = -0.05 2$
							A ₂ and A ₄ from (¹⁶ O,p2n γ).
837	4.0	2576.6	$(17/2^{-})$	1739.6	$(13/2^{-})$	Q	$A_2 = +0.56 \ 10; \ A_4 = -0.15 \ 12$
871 ^a	2.8	1305?		434.1	7/2+,11/2+		
875	57 6	1584.1	$17/2^{+}$	709.1	$13/2^{+}$	Q	$A_2 = +0.33 I; A_4 = -0.10 I$
879 ^a	<3	2295.6?		1416.6	$(11/2^{-})$		
901	2.0	987.3	$11/2^{+}$	86.2	$9/2^{+}$	D+Q	$A_2 = -0.57 \ 3; \ A_4 = +0.38 \ 21$
932 [@]	8@	1919.7	$(11/2^+, 15/2^+)$	987.3	$11/2^{+}$	Q	$A_2 = +0.35 4$; $A_4 = -0.05 4$
949	17	1035.2		86.2	9/2+		$A_2 = -0.84 6; A_4 = +0.02 7$
							I_{γ} ,Mult.: $\gamma\gamma$ indicates this is a doublet. From $\gamma(\theta)$, mult=D+Q for doublet.
1024	16	2608.1	$21/2^{+}$	1584.1	$17/2^{+}$	Q	$A_2 = +0.45 5; A_4 = -0.21 6$
1060 ^a		1305?		245.4			E_{γ} : shown only in drawing.
1065	18	1774.2	$(11/2^+, 15/2^+)$	709.1	$13/2^{+}$	D	$A_2 = -0.19 \ 3; \ A_4 = +0.05 \ 4$
1157 ^a	2.2	3765.1?		2608.1	$21/2^+$		
1211	13	1919.7	$(11/2^+, 15/2^+)$	709.1	$13/2^{+}$	D	$A_2 = -0.25 5; A_4 = +0.08 6$

[†] From 1976Fr10; uncertainties not stated by authors.

[‡] Relative photon intensity from $(\alpha, 2n\gamma)$ at $E\alpha=22.5$ MeV; based on $\gamma(\theta)$ when $\gamma(\theta)$ measured, based on $\theta=125^{\circ}$ datum otherwise. The authors report that uncertainties range from 10% for the strongest lines to 50% for very weak lines. The evaluator has chosen to assign 10% for the three strongest lines (I $\gamma\approx50$ -120) only. The authors do not enumerate I γ data from the ($^{16}O,p2n\gamma$) reaction.

[#] From $\gamma(\theta)$. From reaction systematics, authors further conclude that all transitions for which mult is indicated here take place between levels of the same parity.

[@] Impurity line superimposed on this γ ; $E\gamma$, $I\gamma$ are for doublet.

[&] Multiply placed with undivided intensity.

^a Placement of transition in the level scheme is uncertain.

⁷⁹Br(α,2nγ),⁶⁸Zn(¹⁶O,p2nγ) 1976Fr10

