⁸¹**Rb** ε+ $β^+$ decay (30.5 min) 1977Li14

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

Parent: ⁸¹Rb: E=86.31 6; $J^{\pi}=9/2^+$; $T_{1/2}=30.5 \text{ min } 3$; $Q(\varepsilon)=2239 5$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=2.1 5

⁸¹Rb-E,J^{π},T_{1/2}: from ⁸¹Rb Adopted Levels.

⁸¹Rb-Q(ε): from 2021Wa16.

⁸¹Rb- $\%\varepsilon+\%\beta^+$ decay: Using data in 1977Li14, based on ⁸¹Rb IT branching + ε decay branching=100, using the data of IT I $\gamma(1+\alpha)$ =(4630 200) × (1+17.66 31)=86400 4000 and I $\gamma(1+\alpha)$ to g.s.=1840 400 in ε decay.

Others: 1956Do52, 1969Ha03, 1981FrZY.

Only 1977Li14 and 1981FrZY report the decay of the 30.5-min isomer of ⁸¹Rb; others report the 4.571-h decay alone. The assignment to one or other isomer was made by 1977Li14 on the basis of half-lives of the γ 's and coincidence measurements. However, while 1977Li14 found numerous γ 's belonging to the 30.5-min decay, 1981FrZY found only the 49.6 γ following the 30.5-min half-life. Consequently, this decay scheme probably should be accepted with caution.

1977Li14: E γ , I γ , $\gamma\gamma$ -coin, and internal conversion measurement; Ge(Li) (FWHM=2.5 keV at 1.33 MeV), β spectrometer. 1981FrZY: singles and coin spectra, measured with Ge(Li) (FWHM=2.5-3.5 keV at 1.33 MeV) and Si(Li), timing FWHM \approx 12 ns.

⁸¹Kr Levels

$ \frac{1}{90.47} \frac{7}{72^{+}} \frac{2.13 \times 10^{5} \text{ y} + 16-26}{4.0 \text{ ns } 4} $ $ \frac{190.447}{190.447} \frac{1}{1/27} \frac{13.10 \text{ s} 2}{13.10 \text{ s} 2} T_{1/2}; \text{ from Adopted Levels.} $ $ \frac{56.88}{56.88} \frac{10}{5/27} \frac{5}{72} \frac{1}{73.186} \frac{11}{5/27} \frac{1}{72} \frac{1}{73.186} \frac{11}{5/27} \frac{1}{73.186} \frac{11}{5/27} \frac{1}{72} \frac{1}{73.186} \frac{11}{5/27} \frac{1}{72} \frac{1}{73.186} \frac{1}{120.44} \frac{1}{20} \frac{7}{72} \frac{1}{72} \frac{1}{73.126} \frac{1}{120.44} \frac{1}{20} \frac{7}{72} \frac{1}{72} \frac{1}{73.126} \frac{1}{120.44} \frac{1}{72} \frac{1}{$	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
$\frac{10.44}{56.88} \frac{7}{12} \frac{12^{-1}}{12} 13.10 \text{ s } 2 \qquad T_{1/2}: \text{ from Adopted Levels.} \\ \frac{456.88}{56.74} \frac{12}{12} \frac{3}{27} \frac{11}{731.86} \frac{11}{17} \frac{12^{+1}}{12} \frac{11}{934.50} \frac{11}{22} \frac{11}{27} \frac{11}{12} $	0 49 50 8	7/2 ⁺ 9/2 ⁺	2.13×10^5 y +16-26 4 0 ns 4	
$\frac{456.88}{52^{-}} = 10000000000000000000000000000000000$	190.44 7	$1/2^{-}$	13.10 s 2	$T_{1/2}$; from Adopted Levels.
548.92 9 $5/2^+$ 636.74 12 $3/2^-$ 731.86 11 (5/2) ⁺ 873.8 3 $11/2^+$ 0.19 ps 6 981.74 13 (9/2 ⁺) 1014.42 24 1100.01 11 5/2 ⁺ 1206.44 20 7/2 1682.7 4 7/2.9/2.11/2 ⁽⁺⁾ 1687.9 3 7/2.9/2.11/2 ⁽⁺⁾ 1687.9 3 7/2.9/2.11/2 ⁽⁺⁾ 1781.8 5 7/2.9/2.11/2 ⁽⁺⁾ 1902.6 6 7/2.9/2.11/2 ⁽⁺⁾ [†] From least-squares fit to Ey. [‡] From Adopted Levels. ϵ_{β}^+ radiations ϵ_{K} ϵ_{L} , ϵ_{M} , ϵ_{N} : Additional information 1. $av E\beta$: Additional information 2. ϵ_{K} ϵ_{L} , ϵ_{N} , ϵ_{N} : Additional information 3. $av E\beta$: Additional information 4. E(decay) E(level) $I\epsilon^{\dagger}$ Log ft $I(\epsilon_{+}\beta^{+})^{\dagger}$ Comments	456.88 10	5/2-		-1/2· ·····
636.74 12 $3/2^-$ 731.86 11 (5/2) ⁺ 873.8 3 11/2 ⁺ 934.50 22 11/2 ⁺ 0.19 ps 6 981.74 13 (9/2 ⁺) 1014.42 24 1100.01 11 5/2 ⁺ 1206.44 20 7/2 1682.7 4 7/2.9/2,11/2 ⁽⁺⁾ 1687.9 3 7/2.9/2,11/2 ⁽⁺⁾ 1743.61 11 (7/2) ⁺ 1743.65 7/2.9/2,11/2 ⁽⁺⁾ 1781.8 5 7/2.9/2,11/2 ⁽⁺⁾ 1902.6 6 7/2.9/2,11/2 ⁽⁺⁾ [†] From least-squares fit to Ey. [‡] From Adopted Levels. <i>ε</i> ,β ⁺ radiations <i>ε</i> ,β ⁺ radiations	548.92 9	5/2+		
$731.86 II (5/2)^{+} 873.8 3 11/2^{+} 934.50 22 11/2^{+} 0.19 ps 6 981.74 I3 (9/2^{+}) 1014.42 24 100.01 II 5/2^{+} 1206.44 20 7/2 1682.7 4 7/2.9/2.11/2(+) 1687.9 3 7/2.9/2.11/2(+) 1743.61 II (7/2)^{+} 1781.8 5 7/2.9/2.11/2(+) 1902.6 6 7/2.9/2.11/2(+) 1902.6 6 7/2.9/2.11/2(+) ^{\dagger} From least-squares fit to Ey. \stackrel{*}{=} From Adopted Levels.\underline{\varepsilon,\beta^{+}} radiationseK, eL, eM, eN: Additional information 1.av E\beta: Additional information 2.eK, eL, eM, eN: Additional information 3.av E\beta: Additional information 4.E(decay) E(level) Is† Log ft I(\varepsilon+\beta^{+})† Comments$	636.74 12	3/2-		
873.8 3 $11/2^+$ 934.50 22 $11/2^+$ 0.19 ps 6 981.74 13 (9/2 ⁺) 1014.42 24 1100.01 11 5/2 ⁺ 1206.44 20 7/2 1682.7 4 7/2.9/2.11/2 ⁽⁺⁾ 1687.9 3 7/2.9/2.11/2 ⁽⁺⁾ 1687.9 3 7/2.9/2.11/2 ⁽⁺⁾ 1743.61 11 (7/2) ⁺ 1743.61 11 (7/2) ⁺ 1743.65 7/2.9/2.11/2 ⁽⁺⁾ 1902.6 6 7/2.9/2.11/2 ⁽⁺⁾ [†] From least-squares fit to Ey. [‡] From Adopted Levels. <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations <i>e.,β⁺</i> radiations	731.86 11	$(5/2)^+$		
934.50 22 $11/2^{+}$ 0.19 ps 6 981.74 <i>I</i> 3 (9/2 ⁺) 1014.42 24 1100.01 <i>I</i> 1 5/2 ⁺ 1206.44 20 7/2 1682.7 4 7/2.9/2,11/2 ⁽⁺⁾ 1687.9 3 7/2.9/2,11/2 ⁽⁺⁾ 1783.8 5 7/2.9/2,11/2 ⁽⁺⁾ 1781.8 5 7/2.9/2,11/2 ⁽⁺⁾ 1902.6 6 7/2.9/2,11/2 ⁽⁺⁾ [†] From least-squares fit to Ey. [‡] From Adopted Levels. ε,β^{+} radiations ε,β^{+} radiations $\varepsilon,$	873.8 <i>3</i>	$11/2^{+}$		
981.74 I_3^{-} (9(2 ⁺) 1014.42 24 1100.01 I_1^{-} 5/2 ⁺ 1206.44 20 7/2 1882.7 4 7/2.9/2.11/2 ⁽⁺⁾ 1887.9 3 7/2.9/2.11/2 ⁽⁺⁾ 1743.61 I_1^{-} (7/2) ⁺ 1781.8 5 7/2.9/2.11/2 ⁽⁺⁾ 1902.6 6 7/2.9/2.11/2 ⁽⁺⁾ [†] From least-squares fit to Ey. [‡] From Adopted Levels. <i>EK</i> , <i>eL</i> , <i>eM</i> , <i>eN</i> : Additional information 1. av E β : Additional information 2. <i>eK</i> , <i>eL</i> , <i>eM</i> , <i>eN</i> : Additional information 3. av E β : Additional information 4. E(decay) E(level) Ie [†] Log ft I($\varepsilon + \beta^+$) [†] Comments	934.50 22	$11/2^+$	0.19 ps 6	
$1014.42 24$ $1100.01 11 5/2^{+}$ $1206.44 20 7/2$ $1682.7 4 7/2.9/2.11/2^{(+)}$ $1687.9 3 7/2.9/2.11/2^{(+)}$ $1743.61 11 (7/2)^{+}$ $1743.61 11 (7/2)^{+}$ $1781.8 5 7/2.9/2.11/2^{(+)}$ $1902.6 6 7/2.9/2.11/2^{(+)}$ † From least-squares fit to Ey. ‡ From Adopted Levels. $\frac{e,\beta^{+} \text{ radiations}}{e,\beta^{+} \text{ radiations}}$ $\epsilon K, \epsilon L, \epsilon M, \epsilon N: \text{ Additional information 1.}$ $av E\beta: \text{ Additional information 2.}$ $\epsilon K, \epsilon L, \epsilon M, \epsilon N: \text{ Additional information 3.}$ $av E\beta: \text{ Additional information 4.}$ E(decay) E(level) $I\epsilon^{\dagger}$ $Log ft$ $I(\epsilon + \beta^{+})^{\dagger}$ Comments	981.74 13	$(9/2^{+})$		
$\frac{110001}{12} \frac{1}{12} \frac{1}{$	1014.42 24	5/0+		
$\frac{1200.44}{1} \frac{20}{2} \frac{1}{12}$ $\frac{1200.44}{1} \frac{1200.44}{1}$ $\frac{1200.44}{1} 1200$	1100.01 11	5/2.		
$\frac{102.7 + 1}{12.972,11/2^{(+)}}$ $\frac{102.7 + 1}{12.972,11/2^{(+)}}$ $\frac{1743.61 II}{7/2.9/2,11/2^{(+)}}$ $\frac{1}{781.8 5} \frac{7}{2.9/2,11/2^{(+)}}$ $\frac{1}{902.6 6} \frac{7}{2.9/2,11/2^{(+)}}$ $\frac{1}{7} \text{ From least-squares fit to Ey.}$ $\frac{\varepsilon, \beta^{+} \text{ radiations}}{\varepsilon, \beta^{+} \text{ radiations}}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 1.}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 2.}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 3.}$ $\varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 4.}$ $E(\text{decay}) E(\text{level}) \qquad I\varepsilon^{\dagger} \qquad \text{Log } ft \qquad I(\varepsilon + \beta^{+})^{\dagger} \qquad \text{Comments}$	1200.44 20	$\frac{1}{2}$		
$\frac{1067.9}{1743.61} \frac{11}{11} \frac{7}{2.9/2,11/2^{(+)}}$ $\frac{1}{1781.8} \frac{5}{7/2.9/2,11/2^{(+)}}$ $\frac{1}{7} \text{ From least-squares fit to E}{\gamma}.$ $\frac{1}{7} \text{ From least-squares fit to E}{\gamma}.$ $\frac{1}{7} \text{ From Adopted Levels.}$ $\frac{\varepsilon,\beta^{+} \text{ radiations}}{\varepsilon,\beta^{+} \text{ radiations}}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 1.}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 2.}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 3.}$ $\varepsilon V \in \beta: \text{ Additional information 4.}$ $E(\text{decay}) E(\text{level}) \qquad I\varepsilon^{\dagger} \qquad \text{Log } ft \qquad I(\varepsilon + \beta^{+})^{\dagger} \qquad \text{Comments}$	1082.7 4	7/2,9/2,11/2		
$\frac{1}{128} \frac{1}{128} \frac{1}$	1087.9 5	$(7/2)^+$		
1701.8 5 $T/2.9/2.11/2^{(+)}$ [†] From least-squares fit to Ey. [‡] From Adopted Levels. ε,β^+ radiations ε,β^+ radia	1791 9 5	(1/2) 7/2 0/2 11/2(+)		
[†] From least-squares fit to $E\gamma$. [‡] From Adopted Levels. ε, β^+ radiations ε, β^+	100266	$7/2, 9/2, 11/2^{(+)}$		
[†] From least-squares fit to Ey. [‡] From Adopted Levels. ε,β^{+} radiations ε,β^{+} radiations ε,β	1902.0 0	1/2,9/2,11/2		
[±] From Adopted Levels. [±] From Adopted Levels. $\underline{\varepsilon,\beta^{+}}$ radiations $\underline{\varepsilon,\beta^{+}}$ radia	[†] From lea	st-squares fit to E	V.	
$\frac{\varepsilon, \beta^{+} \text{ radiations}}{\varepsilon, \beta^{+} \text{ radiations}}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{Additional information 1.}$ av E β : Additional information 2. $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{Additional information 3.}$ av E β : Additional information 4. E(decay) E(level) I ε^{\dagger} Log ft I($\varepsilon + \beta^{+}$) [†] Comments	[‡] From Ad	onted Levels.		
$\frac{\varepsilon,\beta^{+} \text{ radiations}}{\varepsilon,\beta^{+} \text{ radiations}}$ $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 1.}$ av E β : Additional information 2. $\varepsilon K, \varepsilon L, \varepsilon M, \varepsilon N: \text{ Additional information 3.}$ av E β : Additional information 4. E(decay) E(level) I ε^{\dagger} Log ft I($\varepsilon + \beta^{+}$) [†] Comments	110111110	opted Develor		
ε K, ε L, ε M, ε N: Additional information 1. av E β : Additional information 2. ε K, ε L, ε M, ε N: Additional information 3. av E β : Additional information 4. E(decay) E(level) I ε^{\dagger} Log ft I($\varepsilon + \beta^+$) ^{\dagger} Comments				ε, β^+ radiations
ε K, ε L, ε M, ε N: Additional information 3. av E β : Additional information 4. E(decay) E(level) I ε^{\dagger} Log ft I($\varepsilon + \beta^+$) ^{\dagger} Comments	ε K, ε L, ε M, av E β : Addit	ε N: Additional in tional information	formation 1. 2.	
av E β : Additional information 4. E(decay) E(level) $I\varepsilon^{\dagger}$ Log ft $I(\varepsilon + \beta^{+})^{\dagger}$ Comments	$\varepsilon K, \varepsilon L, \varepsilon M,$	ε N: Additional in	formation 3.	
E(decay) E(level) $I\varepsilon^{\dagger}$ Log ft $I(\varepsilon + \beta^{+})^{\dagger}$ Comments	av E β : Addit	tional information	4.	
	E(decav) E	$E(\text{level}) = I\varepsilon^{\dagger}$	$Log ft I(\varepsilon)$	$+\beta^+)^{\dagger}$ Comments

(=(==8J:	-(
423 5)	1902.6	0.0057 20	6.65 22	0.0057 20	εK=0.87232 40; εL=0.10447 20; εM+=0.02321 16
544 5)	1781.8	≈0.0065	≈6.8	≈0.0065	εK=0.87383 36; εL=0.10327 17; εM+=0.02290 15

Continued on next page (footnotes at end of table)

			⁸¹ Rb ε+	β^+ decay (30.5 min)	1977Li14 (continued)
				ϵ,eta^+	radiations (co	ontinued)
E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(582 5)	1743.61		0.34 12	5.15 21	0.34 12	εK=0.87417 35; εL=0.10300 17; εM+=0.02283 15
(637 5)	1687.9		0.023 8	6.41 22	0.023 8	εK=0.87459 34; εL=0.10266 16; εM+=0.02274 15
(643 5)	1682.7		0.022 8	6.44 21	0.022 8	εK=0.87463 34; εL=0.10263 16; εM+=0.02274 15
(1119 5)	1206.44	1.2×10 ⁻⁶ 6	0.020 8	6.95 17	0.020 7	av Eβ=47.3 22; εK=0.87641 32; εL=0.10116 14; εM+=0.02236 14
(1344 5)	981.74	5.6×10 ⁻⁴ 23	0.055 23	6.67 18	0.056 19	av E β =144.0 21; ε K=0.8681 7; ε L=0.09984 15; ε M+=0.02207 14
(1391 5)	934.50	6.2×10 ⁻⁴ 27	0.036 16	6.88 19	0.037 13	av Eβ=163.8 21; εK=0.8622 9; εL=0.09910 17; εM+=0.02189 14
(1452 5)	873.8	6.8×10 ⁻⁴ 30	0.022 10	7.13 19	0.023 8	av Eβ=189.6 21; εK=0.8511 13; εL=0.09775 20; εM+=0.02160 14
(1594 5)	731.86	8.2×10 ⁻⁴ 34	0.055 23	7.80 18	0.056 19	av E β =271.6 22; ε K=0.8623 6; ε L=0.10076 15; ε M+=0.02229 14
(2276 5)	49.50	0.8 7	0.66 35	6.06 23	1.5 7	av Eβ=547.0 22; εK=0.3889 41; εL=0.04440 47; εM+=0.00980 11
						E(decay): 2420 200 from 1956Do52; were there a g.s. branch, the authors could not have resolved it from this one.
(2325 [‡] 5)	0					I($\varepsilon + \beta^+$): 0.3 +4-3 from measured I(γ^\pm), β^+ / ε (theory) and decay scheme.

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{81}{\rm Kr})$

I γ normalization: from $\Sigma I \gamma (1+\alpha)$ to g.s.=100 and decay mode branching.

 $\alpha(K)$ exp from β spectra of 1977Li14, normalized so $\alpha(K)$ exp(446.15 transition)=0.00273 20 (adopted from (p,n γ)).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	$\alpha^{\#}$	Comments
49.5 1	660 <i>35</i>	49.50	9/2+	0	7/2+	M1(+E2)	0.19 +12-19	1.3 6	% $I\gamma$ =0.75 22 $\alpha(K)$ =1.1 5; $\alpha(L)$ =0.17 12; $\alpha(M)$ =0.028 19 $\alpha(N)$ =0.0025 15
190.44 7	12.1 <i>12</i>	190.44	1/2-	0	7/2+	E3		0.479 7	Also present in ³¹ Rb (4.5/1 h) ε decay. %I γ =0.014 4 α (exp)=0.54 7 α (K)=0.399 6; α (L)=0.0681 10; α (M)=0.01110 17 α (N)=0.000985 15 E $_{\gamma}$: from Adopted Gammas. α (exp): from 1956Do52. α (K)exp/(α (L+)exp α (M)exp)=5.16 30 (1956Do52), α (K)exp/ α (LM)exp=3.6 5 (1969Ha03).
266.2 [‡] 5	≈0.1	456.88	5/2-	190.44	1/2-	[E2]		0.0258 4	%I $\gamma \approx 1.1 \times 10^{-4}$ $\alpha(K) = 0.02270 \ 35; \ \alpha(L) = 0.00266 \ 4; \ \alpha(M) = 0.000429 \ 7$ $\alpha(N) = 4.17 \times 10^{-5} \ 6$
368.3 <i>3</i>	9.2 5	1100.01	5/2+	731.86	(5/2)+	[M1,E2]		0.0064 20	%Iy=0.0105 31 α (K)=0.0057 18; α (L)=6.3×10 ⁻⁴ 21; α (M)=1.03×10 ⁻⁴ 34 α (N)=1.02×10 ⁻⁵ 33
446.3 [‡] 1	18.0 20	636.74	3/2-	190.44	1/2-	E2+M1	0.44 +20-26	0.00308 23	%I γ =0.021 6 α (K)=0.00273 20; α (L)=0.000296 24; α (M)=4.8×10 ⁻⁵ 4 α (N)=4.8×10 ⁻⁶ 4
456.9 [‡] 1	7.4 14	456.88	5/2-	0	7/2+	E1		1.22×10 ⁻³ 2	%Iγ=0.0085 29 α (K)=0.001080 15; α (L)=0.0001146 16; α (M)=1.852×10 ⁻⁵ 26 α (N)=1.863×10 ⁻⁶ 26
463.3 3	18.0 20	1100.01	5/2+	636.74	3/2-	[E1]		1.17×10 ⁻³ 2	%I γ =0.021 6 $\alpha(K)$ =0.001043 15; $\alpha(L)$ =0.0001107 16; $\alpha(M)$ =1.788×10 ⁻⁵ 25 $\alpha(N)$ =1.799×10 ⁻⁶ 25
465.5 <i>3</i> 499.4 <i>2</i>	18.0 20 25.0 <i>15</i>	1014.42 548.92	5/2+	548.92 49.50	5/2+ 9/2+	[E2]		0.00321 5	%1γ=0.021 6 %1γ=0.029 8 $\alpha(K)=0.00284$ 4; $\alpha(L)=0.000314$ 4; $\alpha(M)=5.07\times10^{-5}$ 7 $\alpha(N)=5.04\times10^{-6}$ 7 Also present in ⁸¹ Rb (4.571 h) ε decay.

					$^{81}\mathbf{R}$	b ε + β ⁺ deca	y (30.5 min)	1977Li14 (cont	inued)
							$\gamma(^{81}\mathrm{Kr})$ (cont	inued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger} @	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	$\alpha^{\#}$	Comments
548.9 <i>1</i>	90 6	548.92	5/2+	0	7/2+	E2(+M1)	≥0.8	0.00220 21	%Iy=0.103 <i>31</i>
									$\alpha(K)=0.00195 \ 19; \ \alpha(L)=0.000213 \ 22; \ \alpha(M)=3.45\times10^{-5} \ 35 \ \alpha(N)=3.45\times10^{-6} \ 34 \ Also present in \ 81Ph \ (4.571 h) \ a \ decay.$
551.5 15	52	1100.01	$5/2^{+}$	548.92	$5/2^{+}$	[M1.E2]		0.00204 34	Also present in $(4.571 \text{ n}) \in \text{decay}.$ $\%$ I γ =0.0057 28
			- /		- 1				$\alpha(K)=0.00181 \ 30; \ \alpha(L)=0.000197 \ 35; \ \alpha(M)=3.2\times10^{-5} \ 6 \ \alpha(N)=3.2\times10^{-6} \ 5 \ F. \ L : from any coin$
613 6 <mark>&</mark> 15	16 & 8	1100.01	5/2+	156.88	5/2-	[E1]		5.36×10^{-4} 8	E_{γ}, I_{γ} . Hom $\gamma\gamma$ com. % $I_{\gamma} = 0.0018$ 11
045.0 15	1.0 0	1100.01	5/2	450.88	572			5.50×10 8	$\alpha(K)=0.00167177; \alpha(L)=5.04\times10^{-5}8; \alpha(M)=8.14\times10^{-6}$ 12
									$\alpha(N) = 8.21 \times 10^{-7} 12$
(A) (& 1	0.00 1	1742 61	$(7/2)^+$	1100.01	5/0+				E_{γ}, I_{γ} : from $\gamma\gamma$ coin.
657 5 2	98 4 11 7 5	1745.01	$(1/2)^{*}$ 7/2	548.92	$5/2^+$ $5/2^+$	D+O			$\%1\gamma = 0.112 33$ $\%1\gamma = 0.013 4$
682.3 1	42.0 18	731.86	$(5/2)^+$	49.50	$9/2^+$	(E2)		$1.30 \times 10^{-3} 2$	%Iy=0.048 14
									$\alpha(\mathbf{K})=0.001153 \ I6; \ \alpha(\mathbf{L})=0.0001253 \ I8; \ \alpha(\mathbf{M})=2.028 \times 10^{-5} \ 28$
770 2 8	<u> </u>	17/3 61	$(7/2)^+$	1014 42					$\alpha(N) = 2.031 \times 10^{-6} 28$
129.2 0	28 2	1745.01	(1/2)	1014.42					E from γγ coin; γ also present in ⁸¹ Rb (4.571 h) ε decay.
732.1 2	18 <i>1</i>	731.86	$(5/2)^+$	0	7/2+	[M1,E2]		0.00099 9	%Iγ=0.021 6
									$\alpha(K)=0.00088 \ 8; \ \alpha(L)=9.4\times10^{-5} \ 9; \ \alpha(M)=1.53\times10^{-5} \ 15$
761.0.2	806	17/3 61	$(7/2)^+$	081 74	$(0/2^{+})$				$\alpha(N) = 1.54 \times 10^{-6} \ 14$
824 2 5	13 1	873.8	(1/2) 11/2 ⁺	49 50	(9/2)	(M1 + E2)	-0.8 + 4 - 6	$7.35 \times 10^{-4}.27$	$\sqrt{1} = 0.009127$ % $1 = 0.0154$
021.2 5	10 1	075.0	11/2	17.00	712	(111112)	0.0 17 0	,	$\alpha(K)=0.000653\ 24;\ \alpha(L)=6.97\times10^{-5}\ 29;\ \alpha(M)=1.13\times10^{-5}\ 5$
				-					$\alpha(N) = 1.14 \times 10^{-6} 4$
873.8 <i>3</i>	7.7 6	873.8	11/2+	0	7/2+	E2		6.85×10 ⁻⁴ 10	$\%_{1\gamma=0.0088} 26$ $\alpha(K)=0.000608 9; \alpha(L)=6.53\times10^{-5} 9;$ $\alpha(M)=1.057\times10^{-5} 15$
									$\alpha(N) = 1.063 \times 10^{-6} \ 15$
885.0 2	32.7 14	934.50	11/2+	49.50	9/2+	M1+E2	-0.4 1	6.09×10 ⁻⁴ 9	%I γ =0.037 <i>11</i> α (K)=0.000541 <i>8</i> ; α (L)=5.74×10 ⁻⁵ <i>9</i> ; α (M)=9.30×10 ⁻⁶
									15

4

 $^{81}_{36}{
m Kr}_{45}{
m -4}$

⁸¹Rb ε + β ⁺ decay (30.5 min) 1977Li14 (continued)

$\gamma(^{81}\text{Kr})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^π	E_f	J_f^π	Comments
932.4 2	32.7 14	981.74	$(9/2^+)$	49.50	$9/2^{+}$	%Ly=0.037 11
981.6 2	24.9 14	981.74	$(9/2^+)$	0	$7/2^+$	%Iy=0.028 8
1011 <i>I</i>	<3	1743.61	$(7/2)^+$	731.86	$(5/2)^+$	%Iy<0.00343
1014.4 4	10.3 7	1014.42		0	$7/2^{+}$	%Iy=0.0118 35
^x 1087 1	10.2 15					
1099.9 2	64.2 27	1100.01	5/2+	0	7/2+	%Iy=0.073 22
						E_{γ} : 1981FrZY report E_{γ} =1100.3 5, tentatively assigned to ⁸¹ Kr, but associated with "long" $T_{1/2}$ isomer.
^x 1136 <i>1</i>	3.6 7					1/2
1157.0 4	6.0 6	1206.44	7/2	49.50	$9/2^{+}$	%Iy=0.0069 21
1194.6 2	95 4	1743.61	$(7/2)^+$	548.92	5/2+	%Iy=0.109 32
1206.0 ^a 15	<1	1206.44	7/2	0	7/2+	
1286.9 4	5.9 4	1743.61	$(7/2)^+$	456.88	5/2-	%Iy=0.0067 20
^x 1297.0 4	6.3 4					
1633.2 5	6.0 4	1682.7	7/2,9/2,11/2 ⁽⁺⁾	49.50	$9/2^{+}$	%Iy=0.0069 20
1638.4 4	10.8 7	1687.9	7/2,9/2,11/2 ⁽⁺⁾	49.50	$9/2^{+}$	%Iy=0.012 4
1682.7 4	13.1 8	1682.7	7/2,9/2,11/2 ⁽⁺⁾	0	$7/2^{+}$	%Iy=0.015 4
1687.9 <i>4</i>	9.1 7	1687.9	7/2,9/2,11/2 ⁽⁺⁾	0	$7/2^{+}$	%Iy=0.0104 31
1694.4 <i>4</i>	15.6 8	1743.61	$(7/2)^+$	49.50	$9/2^{+}$	%Iy=0.018 5
1732 <i>I</i>	≈1	1781.8	7/2,9/2,11/2(+)	49.50	$9/2^{+}$	%Iy≈0.0011
						E _y : 1981FrZY report E γ =1732.4 5 for a γ ray with no isotopic assignment.
1743.5 <i>3</i>	48.4 21	1743.61	$(7/2)^+$	0	7/2+	%Iy=0.055 <i>16</i>
1781.8 5	4.7 4	1781.8	7/2,9/2,11/2 ⁽⁺⁾	0	$7/2^{+}$	%Iy=0.0054 16
1853 <i>1</i>	0.9 2	1902.6	7/2,9/2,11/2 ⁽⁺⁾	49.50	$9/2^{+}$	%Iy=0.0010 4
1902.6 7	4.1 4	1902.6	7/2,9/2,11/2(+)	0	$7/2^{+}$	%Iy=0.0047 14

[†] From 1977Li14. On the intensity scale, $I(\gamma^{\pm})=1810\ 100$ and $I(86.6\gamma, {}^{81}\text{Rb})=4630\ 200\ (1977Li14)$. [‡] From ${}^{81}\text{Rb}\ \varepsilon$ decay (4.571 h) data of 1977Li14.

S

Additional information 5.
@ For absolute intensity per 100 decays, multiply by 0.0011 4.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

⁸¹Rb ε decay (30.5 min) 1977Li14

