⁷⁸Se(α ,n γ) 1983Ka03,1984Do02

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

Other: 1980CaZT.

1983Ka03: $E\alpha$ =10 MeV to 18 MeV, 97% ⁷⁸Se target; measured $E\gamma$, $I\gamma$, $n\gamma$ and $\gamma\gamma$ coin, $\gamma(\theta)$ (θ =0°-90°, 15° steps), excit (12-18 MeV); Ge(Li), resolution=2.4-2.5 keV at 1.33 MeV, timing FWHM=14 ns.

1984Do02: E α =27 MeV, 97.9% ⁷⁸Se target, pulsed beam; measured $\alpha\gamma$ delay.

⁸¹Kr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	Comments
0 49.57 4 190.44 7 456.7 549 2	$7/2^+$ @ 9/2 ⁺ @ $1/2^-$ @ $5/2^-$ ($5/2^+$ $3/2$)	3.9 ns 4	I^{π} : excitation function favors 3/2 decay mode favors 5/2 549 $\gamma(\theta)$ does not distinguish
608.4	(3/2 ⁺ 3/2 ⁺		between $\Delta J=1$ and $\Delta J=2$, and $499.8\gamma(\theta)$ is isotropic. Adopted value is $5/2^+$. J^{π} : $3/2$ from isotropic 608.4 γ angular distribution measurements and excitation function data (1983Ka03).
636.5 700.6	3/2 ⁻ 5/2 ⁻		
732.2 873.5	$(7/2,5/2)^+$ 11/2 ⁺		J^{π} : 683 γ excit favors J=5/2 but $\gamma(\theta)$ favors $\Delta J=1$ to 9/2 ⁺ and is inconsistent with $\Delta J=2$.
902.7 919.9	7/2 ⁻ 3/2 ⁽⁻⁾		J^{π} : 7/2 from 853 γ and 903 γ excit.
934.1	$11/2^{(+)}$		
976.2 976.3	$1/2^{(+)\#}$ $13/2^{+\#}$		
995.1	(3/2)		
1025.7 1093.2?	(3/2)		
1206.7 1239.0	(7/2,5/2)		
1348.8	9/2-		
1394.7	$5/2^{(-)}$ $9/2^{-}$		
1607.7	$\frac{13}{2^+}$		
1841.7 1993.6 2069.1	13/2 ⁺ 15/2 ⁺		
2135.6	$17/2^{+}$		
2166.1	$13/2^{-}$		
2191.4 2217.0 2363.0 2420.2	$(15/2^+)$ $(13/2^+)$		
2533.6 2699.7	(15/2)	<0.2 ns	Level reported in 1984Do02 only.

[†] From a least-squares fit to $E\gamma$, assuming $\Delta E\gamma$ =1 keV.

[‡] Recommended values from 1983Ka03, based on $\gamma(\theta)$, γ excit and reaction systematics, except as noted.

[#] Angular distribution and excitation function of the 926.6 γ suggest $J^{\pi}=13/2^+$, whereas 339.7 $\gamma(\theta)$ suggests $1/2^+$. Consequently, a 976-keV doublet is proposed by 1983Ka03.

⁷⁸Se(α ,n γ) 1983Ka03,1984Do02 (continued)

⁸¹Kr Levels (continued)

[@] From Adopted Levels.
[&] From centroid shift of time curve (1984Do02).

⁷⁸ Se(α ,n γ) 1983Ka03,1984Do02 (continued)								
$\gamma^{(81}\mathrm{Kr})$								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	Comments
(49.57 [‡] 4)		49.57	9/2+	0	7/2+			
166.1		2699.7		2533.6	(15/2)			E_{γ} : from 1984Do02 only.
(190.44 [‡] 7)		190.44	$1/2^{-}$	0	7/2+			
244.0	2.1 10	700.6	5/2-	456.7	5/2-	D+Q	+1.8 + 8 - 5	$A_2 = +0.215 \ 22; \ A_4 = +0.04 \ 3$
283.4	<1.0	919.9	$3/2^{(-)}$	636.5	3/2-			
339.7	1.40 9	976.2	$1/2^{(+)}$	636.5	3/2-	D+Q		$A_2 = -0.04 \ 4; \ A_4 = +0.01 \ 5$
367.5	8.7 <i>3</i>	2533.6	(15/2)	2166.1	$13/2^{-}$	D		$A_2 = -0.262\ 25;\ A_4 = -0.06\ 3$
389.2	<1.0	1025.7	(3/2)	636.5	3/2-			
446.1	25.9 10	636.5	3/2-	190.44	$1/2^{-}$			$A_2 = +0.186\ 22;\ A_4 = 0.00\ 3$
								May also deexcite the 903 level.
446.1		902.7	$7/2^{-}$	456.7	5/2-			Possible doublet; principal placement is from 637 level.
456.7	44.1 <i>15</i>	456.7	5/2-	0	7/2+			E_{γ} : strong coin seen with 446.1 γ deexciting the 637 level and feeding the 190.6 level. Therefore, the 456.7 γ may be a doublet deexciting both the 457 and 1093 levels. A ₂ =+0.039 25, A ₄ =-0.03 3.
456.7 <mark>&</mark>		1093.2?		636.5	$3/2^{-}$			See comment on the 457γ deexciting the 457 level.
499.8	5.40 15	549.2	$(5/2^+, 3/2)$	49.57	9/2+			$A_2 = -0.004\ 25;\ A_4 = 0.00\ 3$
(510.4)		700.6	5/2-	190.44	1/2-			E_{γ} : the 510.4-keV transition is known from $(p,n\gamma)$ reaction and decay studies. In $(\alpha,n\gamma)$, it could not be seen because it was masked by the intense annihilation peak, but its existence is confirmed indirectly by coin data.
538.4	3.7 3	995.1	(3/2)	456.7	5/2-			$A_2 = +0.12 4; A_4 = -0.01 5$
538.4		1239.0		700.6	5/2-			Possible doublet; principal placement is from 995 level.
549.1	16.1 5	549.2	$(5/2^+, 3/2)$	0	7/2+			$A_2 = +0.148 21; A_4 = -0.027 25$
560.2	1.60.15	1025 7	(3/2)	156 7	5/2-	D(+0)		A_2, A_4 values indicate $\Delta J = 1$ of 2.
509.2 608.4	876	608.4	(3/2) $3/2^+$	4,50.7	$\frac{3}{2}$	$D(\mp Q)$		$A_2 = -0.045; A_4 = -0.015$
(01.1 ⁸)	5.70	1607.7	5/2 12/2 ⁺	076.2	12/2+			$A_2 = -0.04 \ J, \ A_4 = -0.01 \ J$
631.1	5.6.3	1607.7	$\frac{13}{2}$	9/6.3	$\frac{13}{2}$			A 0.569 35: A 10.053 34
657.5	3.9 2	1206.7	(1/2, 5/2)	549.2	$(5/2^{+}, 5/2)$	D+Q	0.00 . 20 . 20	$A_2 = -0.308 \ 23; \ A_4 = +0.052 \ 24$
6/3.6	16.7.5	1607.7	$13/2^{+}$	934.1	$11/2^{(1)}$	D+Q	-0.89 + 30 - 20	$A_2 = -0.913; A_4 = +0.09717$
682.6	11.2 4	132.2	(7/2,5/2)*	49.57	9/2'			$A_2=-0.220\ 24$; $A_4=-0.02\ 3$ Mult.: A_2 , A_4 implies D(+Q) but this is inconsistent with adopted J=(5/2) for the 732 level.
694.1	4.9 7	1394.7	$5/2^{(-)}$	700.6	5/2-			$A_2 = +0.18$ 12; $A_4 = -0.07$ 15
723.0	3.4 2	2166.1	$13/2^{-}$	1442.8	9/2-	Q		$A_2 = +0.61 4; A_4 = -0.22 5$
729.4	12.4 4	919.9	$3/2^{(-)}$	190.44	$1/2^{-}$	D		$A_2 = -0.28 \ 3; \ A_4 = 0.00 \ 3$
732.2 <mark>&</mark>	<71	732.2	$(7/2, 5/2)^+$	0	7/2+			E. L.: possibly a σ s transition exists but is masked in (α m) by a
7.52.2	\/.1	132.2	(1/2,5/2)		, i 2	0		more intense 729.3 γ . I γ =6.7 4 for observed line.
/42.4	15.9.5	1442.8	9/2-	700.6	5/2-	Q		$A_2 = +0.393 \ 23; \ A_4 = -0.12 \ 3$
758.1	≤ 1.0	1394.7	$5/2^{(-)}$	636.5	$3/2^{-}$			

ω

$\gamma(^{81}$ Kr) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{\#}$	α@	Comments
817.2	7.0 3	2166.1	$13/2^{-}$	1348.8	9/2-	Q			$A_2 = +0.42 6; A_4 = -0.14 8$
824.0	30.8 5	873.5	$11/2^{+}$	49.57	$9/2^{+}$	D+Q	-0.8 + 4 - 6		$A_2 = -0.50 \ 3; \ A_4 = +0.02 \ 3$
835.0	3.0 5	1025.7	(3/2)	190.44	$1/2^{-}$				$A_2 = +0.14 \ II; A_4 = +0.01 \ I3$
853.0	10.0 5	902.7	$7/2^{-}$	49.57	9/2+	D			$A_2 = -0.157 \ 23; \ A_4 = -0.08 \ 3$
873.6	18.7 6	873.5	$11/2^{+}$	0	$7/2^{+}$	Q			$A_2 = +0.355 \ 23; \ A_4 = -0.13 \ 3$
884.6	61.0 20	934.1	$11/2^{(+)}$	49.57	9/2+	D+Q	-0.73 + 25 - 47		$A_2 = -0.86 \ 3; \ A_4 = +0.098 \ 20$
892.1	11.4 5	1348.8	9/2-	456.7	$5/2^{-}$	Q			$A_2 = +0.42 4; A_4 = -0.13 4$
902.6	9.2 5	902.7	$7/2^{-}$	0	$7/2^{+}$				$A_2 = +0.28 \ 6; \ A_4 = 0.00 \ 8$
907.6	4.6 5	1841.7	$13/2^{+}$	934.1	$11/2^{(+)}$	(M1+E2)	-0.44 20	5.78×10 ⁻⁴ 11	$A_2 = -0.97 \ 10; \ A_4 = +0.08 \ 10$
									Mult.: D+Q from A_2 , A_4 .
926.6	100	976.3	$13/2^{+}$	49.57	$9/2^{+}$	Q			$A_2 = +0.449 \ 23; A_4 = -0.13 \ 3$
977.4	≤3.0	2420.2		1442.8	9/2-				
985.7	≤2.5	1442.8	9/2-	456.7	5/2-				
1017.2	8.4 4	1993.6	15/2+	976.3	13/2+	D+Q	-0.94 + 10 - 20		$A_2 = -0.934; A_4 = +0.103$
1120.3	7.4 3	1993.6	$15/2^+$	873.5	11/2+	Q			$A_2 = +0.36 3; A_4 = -0.14 4$
1135.0	≤0.5	2069.1		934.1	$11/2^{(+)}$	_			
1159.3	15.3 7	2135.6	17/2+	976.3	$13/2^+$	Q		4	$A_2 = +0.315; A_4 = -0.126$
1232.1	3.6 <i>3</i>	2166.1	$13/2^{-}$	934.1	$11/2^{(+)}$	(E1)		2.11×10^{-4}	$A_2 = -0.24 3; A_4 = -0.05 4$
					(.)			4	Mult.: D from A_2 , A_4 ; systematics favor E1.
1257.3	7.3 4	2191.4	$(15/2^+)$	934.1	$11/2^{(+)}$	(E2)		3.15×10^{-4}	$A_2 = +0.42 4$; $A_4 = -0.13 6$
									Doublet if $E\alpha > 16.5$ MeV.
								4	Mult.: Q from A_2 , A_4 ; systematics favor E2.
1292.6	3.2 3	2166.1	$13/2^{-}$	873.5	$11/2^{+}$	(E1)		2.40×10^{-4}	$A_2 = -0.10 4; A_4 = -0.12 5$
									Mult.: D from A_2 , A_4 ; systematics favor E1.
1343.5	2.8 <i>3</i>	2217.0	$(13/2^+)$	873.5	$11/2^{+}$	(M1+E2)	-1.8 + 5 - 8	2.93×10^{-4}	$A_2 = -0.72$ 7; $A_4 = +0.19$ 6
0									Mult.: $D+Q$ from A_2 , A_4 .
1349.3 <mark>&</mark>	4.6 3	1348.8	9/2-	0	7/2+	(E1)		2.68×10^{-4}	$A_2 = -0.13$ 7; $A_4 = -0.04$ 9
									Mult.: D from A ₂ , A ₄ ; systematics favor E1.
1428.9	≤3.0	2363.0		934.1	$11/2^{(+)}$				
1557.4	9.3 4	2533.6	(15/2)	976.3	$13/2^{+}$				$A_2 = -0.08 \ 2; \ A_4 = -0.08 \ 3$

[†] From 1983Ka03. I γ relative to I(927 γ)=100; Δ E not given by authors.

[‡] From Adopted Gammas. [#] From $\gamma(\theta)$ (1983Ka03).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{81}_{36}{
m Kr}_{45}$

 $^{81}_{36}$ Kr₄₅-6

