	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

Parent: ⁸¹Ga: E=0; $J^{\pi}=5/2^{(-)}$; $T_{1/2}=1.219$ s 5; $Q(\beta^{-})=8664$ 4; $\%\beta^{-}$ decay=100

⁸¹Ga-J^{π},T_{1/2}: from ⁸¹Ga Adopted Levels.

⁸¹Ga-Q(β^{-}): from 2021Wa16.

Also 1980HoZN, E γ , I γ and $\gamma\gamma$ coin data used in 1981Ho24 are tabulated.

Others: 1981Al20, 1981Ho07, 1990Ru05.

Source: ⁸¹Ga from mass-separated fission products.

1981Ho24, 1980HoZN: singles γ and $\gamma\gamma$ -coincidences measured with Ge(Li); x-ray detector for low energy γ search (E $\gamma \ge 15$ keV); Si(Li) detector for simultaneous measurement of ce and γ spectra for α (K)exp determination.

⁸¹Ge Levels

E(level) [†]	J ^{π#}	T _{1/2} ‡	Comments
0	(9/2+)	6.4 s 2	$T_{1/2}$: from Adopted Levels. In 1981Ho24, 7.6 s 6 – same value as of the 1st excited state. See the footnote.
679.14 <i>4</i>	(1/2 ⁺)	7.6 s 6	E(level): 710 310 from difference in measured β endpoint energies for various $\gamma(^{81}As)$ -gated $\beta(^{81}Ge)$ spectra for ^{81}Ge g.s. and isomeric state decays (1981Al20).
711.207 23	$(5/2^+)$	3.9 ns 2	y-ray decay mensity <1 per 100 isomene decays (1)0111024).
895.63 4	$(1/2^{-})$	<0.5 ns	
1241.44 <i>3</i>	$(1/2^+, 3/2, 5/2^+)$		
1286.466 23	$(5/2^+, 7/2^-)$		
1303.23 <i>3</i>	$(5/2^+, 7/2, 9/2^+)$		
1409.93 4			
1548.505 24	$(5/2^+, 7/2)$		
1577.02 11			
1723.97 <i>3</i>	$(3/2^{-}, 5/2^{-})$		
1731.04 4	$(5/2^+, 7/2)$		
1805.54 7	$(5/2^+, 7/2)$		
1816.23 5	$(3/2^{-})$		
1832.23 4	(3/2 ,5/2)		
1855.54 5	(5/2 + 7/2)		
2138.38 4	(3/2, 7/2)		
2419 90 4			
2529.30 5	$(3/2.5/2^{-})$		
2549.97 11	$(5/2^+, 7/2)$		
2563.18 5	$(3/2, 5/2^{-})$		
2693.67 10			
2996.71 <i>3</i>	$(3/2^{-}, 5/2^{-}, 7/2^{-})$		
3021.39 6	$(3/2, 5/2^{-})$		
3129.05 5	(3/2, 5/2, 7/2)		
3437.23 4	$(3/2^{-}, 5/2^{-})$		
3503.08 4	(1/2)		
3003.30 8	(1/2)		
3097.95 10	(1/2) $(7/2^{-})$		
3820 15 10	(1/2) (3/2) 5/2) 7/2)		
4012 91 4	(3/2, 3/2, 7/2) $(3/2^{-}, 5/2^{-}, 7/2^{-})$		
4035.31 7	$(3/2^{-}, 3/2^{-}, 7/2^{-})$		
4168.17 5	$(3/2^{-})$		
4276.77 16	(3/2, 5/2, 7/2)		
4470.53 20	(7/2 ⁻)		

From ENSDF

81 Ga β^- decay (1.219 s) 1981Ho24 (continued)

⁸¹Ge Levels (continued)

E(level) [†]	Comments
4827 7+x	$E(\text{level})$: from $S(n)=4827.7.29$ (⁸¹ Ge) and x<3836.5 [from $O(\beta^{-1})$ (⁸¹ Ga=8664.4)- $S(n)$ (⁸¹ Ge) (2021Wa16)]

[†] From least-squares fit to $E\gamma$, omitting $E\gamma$ for uncertain or doubly-placed lines and for lines whose $E\gamma$ deviates from least-squares adjusted value by at least 3σ (991 γ , 1941 γ , 2436 γ and 2955 γ).

[‡] From 1981Ho24, except where otherwise noted, based on analysis of ⁸¹Ga decay and $\beta\gamma$ coin measurements, it is evident that there are two β^- decaying isomers in ⁸¹Ge (g.s. and 1st excited state) but, in multispectrum analysis of mass number 81, it was not possible to differentiate between the two half-lives. Hence, 1981Ho24 conclude that the isomers (g.s. and 1st excited state) possess similar T_{1/2} values.

[#] From Adopted Levels.

β^- radiations

 $Q(\beta^-)=8320\ 150\ (1981Al20)$, based on $E\beta(max)$ for eight $\gamma\beta$ coin spectra. Measured average $E\beta=2240\ 20\ (1990Ru05)$.

 β^- av E β : Additional information 1.

E(decay)†	E(level)	Ιβ ^{-‡#}	Log ft	Comments
$(1.9 \times 10^3 \& 19)$	4827.7+x	11.8 8	4.6	av E β =1675.8
				$I\beta^{-1}$; from $\%\beta^{-}n=11.8$ 8 in ⁸¹ Ga g.s. Adopted Levels.
$(4194 \ 4)$	4470.53	0.87 9	5.864 45	av $E\beta = 1847.5 \ 19$
				E(decay): β endpoint: 4150 960 (1981Al20).
(4387 4)	4276.77	0.36 5	6.34 6	av $E\beta = 1940.8 \ 19$
(4496 4)	4168.17	7.0 5	5.094 31	av E β =1993.2 19
				E(decay): β endpoint: 4400 380 (1981Al20).
(4629 4)	4035.31	2.42 22	5.612 40	av E β =2057.3 19
				E(decay): β endpoint: 4170 490 (1981Al20).
(4651 4)	4012.91	8.6 6	5.071 30	av $E\beta = 2068.1 \ I9$
				E(decay): β endpoint: 4460 510 (1981Al20).
(4844 4)	3820.15	0.63 10	6.29 7	av $E\beta = 2161.2 \ I9$
(4891 4)	3772.88	5.8 4	5.34 <i>3</i>	av $E\beta = 2184.0 \ 19$
(4966 4)	3697.95	1.13 11	6.080 42	av $E\beta = 2220.2 \ 19$
(4998 4)	3665.56	2.35 21	5.775 39	av Eβ=2235.8 19
(5161 4)	3503.08	7.8 6	5.317 <i>33</i>	av E β =2314.4 19
				E(decay): others: 4580 520 and 4850 590 - measured values in 1981Al20.
(5227 4)	3437.23	6.1 5	5.448 <i>36</i>	av E β =2346.3 19
				E(decay): β endpoint: 5100 340 (1981Al20).
(5535 4)	3129.05	0.94 8	6.373 <i>37</i>	av E β =2495.4 19
(5643 4)	3021.39	1.13 12	6.331 46	av E β =2547.4 19
(5667 4)	2996.71	6.9 7	5.554 44	av E β =2559.4 19
				E(decay): β endpoint: 5200 290 (1981Al20).
(5970 4)	2693.67	0.65 7	6.683 47	av E β =2706.1 19
(6101 4)	2563.18	2.44 18	6.152 32	av E β =2769.3 19
(6114 4)	2549.97	0.73 7	6.680 42	av E β =2775.7 19
(6135 4)	2529.30	1.50 12	6.374 <i>35</i>	av E β =2785.8 19
(6489 4)	2174.87	0.40 4	7.060 43	av E β =2957.5 19
(6526 4)	2138.38	0.91 13	6.71 6	av E β =2975.2 19
(6809 4)	1855.34	0.39 4	7.167 45	av E β =3112.4 19
(6832 4)	1832.23	1.9 5	6.49 11	av E β =3123.6 19
(6848 4)	1816.23	1.68 14	6.544 <i>36</i>	av E β =3131.4 19
(6859 4)	1805.54	0.98 9	6.781 40	av $E\beta = 3136.5 \ 19$
(6933 4)	1731.04	1.09 15	6.76 6	av E β =3172.7 19

Continued on next page (footnotes at end of table)

$\frac{^{81}\text{Ga}\beta^-}{^1}$ decay (1.219 s) 1981Ho24 (continued)									
β^- radiations (continued)									
E(decay)†	E(level)	Ιβ ^{-‡#}	Log ft		Comments				
(6940 4)	1723.97	4.0 13	6.19 14	av Eβ=3176.1 19					
(7087 4)	1577.02	0.26 6	7.42 10	av Eβ=3247.3 19					
(7116 4)	1548.505	2.18 25	6.51 5	av Eβ=3261.1 19					
(7254 4)	1409.93	0.54 11	7.15 9	av Eβ=3328.3 19					
(7361 4)	1303.23	0.24 14	7.53 25	av Eβ=3380.1 19					
(7378 4)	1286.466	3.3 5	6.40 7	av Eβ=3388.2 19					
(7768 [@] 4)	895.63	2.1 19	8.87 <i>39</i>	av Eβ=3571.8 19					
(7953 4)	711.207	3.6 9	6.51 11	av Eβ=3667.1 19					
(7985 [@] 4)	679.14	≤5.1	$\geq 8.6^{1u}$	av E β =3676.8 19					
(8664 [@] 4)	0	≤8.7	$\geq 8.6^{1u}$	av E β =4006.4 19					

[†] From $Q(\beta^{-})$ and E(level). Measured endpoint energies from 1981Al20 are given in comments.

[±] From intensity imbalance, except as noted. I β (g.s.) and I β (679 level) are deduced to be \leq 7.7% and \leq 5.1%, respectively, under the assumption that $\log f^{lu} t \ge 8.5$. # Absolute intensity per 100 decays. @ Existence of this branch is questionable.

[&] Estimated for a range of levels.

 $\gamma(^{81}\text{Ge})$

I γ normalization: from [$\Sigma(I(\gamma+ce) \text{ to g.s.})+\Sigma(I(\gamma+ce) \text{ to 679 level})$]=[100–(% delayed n)-%I β (g.s.)-%I β (679)]=81 5, assuming % β ⁻n=11.8 8 (from ⁸¹Ga Adopted Levels). I β (to g.s.)=4.4 44 and I β (to 679 level)=2.6 26 (<8.7% and <5.1%, respectively, based on log $f^{du}t$ >8.5), are overlapping zero. Measured average E γ =2730 30 (1990Ru05).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	$\alpha^{\boldsymbol{b}}$	Comments
216.47 3	100 4	895.63	(1/2 ⁻)	679.14	(1/2 ⁺)	E1	0.00692 10	% $I\gamma$ =36.7 24 α (K)exp=0.0066 20 (1981Ho24) α (K)=0.00619 9; α (L)=0.000634 9; α (M)=9.43×10 ⁻⁵ 13
								$\alpha(N) = 6.01 \times 10^{-6} 8$
								%Iγ=36.7 25 assuming recommended decay-scheme normalization. I(216γ)/I(delayed n)=2.9 2 (1981Ho07).
								Mult.: from $\alpha(K)(exp)$ in 1981Ho24.
256.6 3	0.45 9	1805.54	$(5/2^+, 7/2)$	1548.505	$(5/2^+,7/2)$			$\%$ I γ =0.165 35
262.03 4	0.76 5	1548.505	$(5/2^+, 7/2)$	1286.466	$(5/2^+, 7/2^-)$			$\%$ I γ =0.279 26
437.42 4	0.44 3	1723.97	(3/2, 5/2)	1286.466	$(5/2^+, 7/2^-)$			$\%1\gamma = 0.162 \ 15$
482.51 3	8.9 5	1/23.97	(3/2, 5/2)	1241.44	$(1/2^+, 3/2, 5/2^+)$			$\sqrt[6]{1} = 3.27 \ 28$
520 22 4	12.0.6	1203.34	$(3/2^+, 1/2)$ $(1/2^+, 2/2, 5/2^+)$	711 207	$(3/2^+, 1/2, 9/2^+)$			$\%1\gamma=0.554$
562 37 5	1 98 10	1241.44	(1/2, 3/2, 3/2) (1/2+3/2, 5/2+)	670 14	(3/2) $(1/2^+)$			$\sqrt[7]{-4.4} 4$ $\sqrt[7]{-0.73} 6$
574 83 5	2 32 16	1816 23	(1/2, 3/2, 3/2) $(3/2^{-})$	1241 44	$(1/2^+)$ $(1/2^+ 3/2 5/2^+)$			$\sqrt{1} = 0.750$
613 89 4	0.65.5	1855 34	(3/2)	1241.44	$(1/2^+, 3/2, 5/2^+)$			$\%$ [ν =0.239.24
626.36.6	0.60.5	2174.87		1548,505	$(5/2^+, 7/2)$			$\%$ [$\gamma = 0.220$ 23
698.69 <i>3</i>	4.5 2	1409.93		711.207	$(5/2^+)$			%Iy=1.65 13
711.19 3	47 2	711.207	$(5/2^+)$	0	$(9/2^+)$	[E2]	8.42×10^{-4} 12	%Iy=17.3 13
			(-)					$\alpha(K)=0.000751 \ 11; \ \alpha(L)=7.79\times10^{-5} \ 11; \ \alpha(M)=1.161\times10^{-5} \ 16$
								$\alpha(N) = 7.51 \times 10^{-7} 11$
728.32 6	1.60 14	2138.38	$(5/2^+, 7/2)$	1409.93				$\%$ I γ =0.59 6
730.84 5	2.55 12	2563.18	$(3/2, 5/2^{-})$	1832.23	$(3/2^{-}, 5/2^{-})$			%Iy=0.94 8
776.21 4	3.5 2	3772.88	$(7/2^{-})$	2996.71	$(3/2^{-}, 5/2^{-}, 7/2^{-})$			%Iγ=1.29 <i>11</i>
805.32 5	1.99 10	2529.30	$(3/2, 5/2^{-})$	1723.97	$(3/2^{-}, 5/2^{-})$			%Iγ=0.73 <i>6</i>
828.26 5	59 <i>3</i>	1723.97	$(3/2^{-}, 5/2^{-})$	895.63	$(1/2^{-})$			$\%$ I γ =21.7 18
865.81 10	2.00 12	1577.02		711.207	$(5/2^+)$			$\%$ I γ =0.73 7
920.7 3	0.3 1	1816.23	$(3/2^{-})$	895.63	$(1/2^{-})$			$\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$
933	0.5	21/4.8/	(2 0-5 0-)	1241.44	$(1/2^+, 3/2, 5/2^+)$			$\%_{1}\gamma = 0.184 \ 12$
936.62 4	25.6 11	1832.23	(3/2,5/2)	895.63	(1/2)			$\frac{1}{2}$
902.04 11	1.08 /	2093.07		1/31.04	$(3/2^{+}, 1/2)$			%01γ=0.40 <i>4</i>

4

From ENSDF

$\gamma(^{81}\text{Ge})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Comments
991.06 ^{&} 7	1.81 12	4012.91	(3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻)	3021.39	(3/2,5/2 ⁻)	%Iy=0.67 <i>6</i>
1016.42 14	2.5 <i>3</i>	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	2996.71	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	%Iγ=0.92 <i>13</i>
1019.80 4	6.6 <i>3</i>	1731.04	$(5/2^+, 7/2)$	711.207	$(5/2^+)$	%Iy=2.43 <i>19</i>
1083.22 6	2.22 12	3503.08	$(7/2^{-})$	2419.90		%Iγ=0.82 7
1104.93 9	1.14 10	1816.23	$(3/2^{-})$	711.207	$(5/2^+)$	%Iy=0.42 5
1116.63 5	3.2 2	2419.90		1303.23	$(5/2^+, 7/2, 9/2^+)$	%Iγ=1.18 <i>11</i>
1137.07 4	1.83 9	1816.23	$(3/2^{-})$	679.14	$(1/2^+)$	%Iγ=0.67 5
1144	0.4	1855.34		711.207	$(5/2^+)$	%Iy=0.147 10
1164.53 <i>3</i>	3.5 2	2996.71	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1832.23	$(3/2^{-}, 5/2^{-})$	%Iγ=1.29 <i>11</i>
1189.16 6	1.59 9	3021.39	$(3/2, 5/2^{-})$	1832.23	$(3/2^{-}, 5/2^{-})$	%Iy=0.58 5
^x 1203.17 15	0.51 5					%Iy=0.187 22
1272.71 3	18.0 9	2996.71	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1723.97	$(3/2^{-}, 5/2^{-})$	%Iy=6.6 5
1286.39 <i>3</i>	16.2 8	1286.466	$(5/2^+, 7/2^-)$	0	$(9/2^+)$	%Iγ=6.0 5
1303.20 3	4.8 <i>3</i>	1303.23	$(5/2^+, 7/2, 9/2^+)$	0	$(9/2^+)$	%Iy=1.76 <i>16</i>
x1339.83 12	1.01 8					%Iy=0.37 4
1352.87 7	3.4 2	3772.88	$(7/2^{-})$	2419.90		%Iy=1.25 11
1405.07 4	2.57 14	3129.05	(3/2,5/2,7/2)	1723.97	$(3/2^{-}, 5/2^{-})$	%Iy=0.94 8
1448.25 7	1.37 9	2996.71	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1548.505	$(5/2^+, 7/2)$	%Iγ=0.50 5
1483.45 12	0.78 5	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	2529.30	$(3/2, 5/2^{-})$	%Iy=0.287 26
1548.51 <i>3</i>	13.0 5	1548.505	$(5/2^+, 7/2)$	0	$(9/2^+)$	%Iy=4.8 <i>4</i>
1604.93 7	1.48 8	3437.23	$(3/2^{-}, 5/2^{-})$	1832.23	$(3/2^{-}, 5/2^{-})$	%Iy=0.54 5
1633.47 9	2.35 13	2529.30	$(3/2, 5/2^{-})$	895.63	$(1/2^{-})$	%Iγ=0.86 7
1667.61 6	2.60 14	2563.18	$(3/2, 5/2^{-})$	895.63	$(1/2^{-})$	%Iγ=0.96 8
1671.4 <i>4</i>	0.34 8	3503.08	$(7/2^{-})$	1832.23	$(3/2^{-}, 5/2^{-})$	%Iy=0.125 <i>31</i>
1710.2 2	2.0 7	2996.71	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1286.466	$(5/2^+, 7/2^-)$	%Iγ=0.73 26
1713.26 4	10.3 4	3437.23	$(3/2^{-}, 5/2^{-})$	1723.97	$(3/2^{-}, 5/2^{-})$	%I ₇ =3.79 29
1730.95 7	1.47 8	1731.04	$(5/2^+, 7/2)$	0	$(9/2^+)$	%Iy=0.54 5
^x 1770.52 11	0.44 5					%Iγ=0.162 21
1779.05 <i>3</i>	5.1 <i>3</i>	3503.08	$(7/2^{-})$	1723.97	$(3/2^{-}, 5/2^{-})$	%Iγ=1.87 <i>16</i>
1805.61 7	1.29 8	1805.54	$(5/2^+, 7/2)$	0	$(9/2^+)$	%Iy=0.47 4
1818.15 7	0.52 4	2529.30	$(3/2, 5/2^{-})$	711.207	$(5/2^+)$	%I ₇ =0.191 19
1852.37 15	1.49 12	2563.18	$(3/2, 5/2^{-})$	711.207	$(5/2^+)$	%Iγ=0.55 <i>6</i>
1874.36 9	2.92 16	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	2138.38	$(5/2^+, 7/2)$	%Iy=1.07 9
1940.97 <mark>&</mark> 6	2.94 15	3772.88	$(7/2^{-})$	1832.23	$(3/2^-, 5/2^-)$	%Iy=1.08 9
1955.61 ^{d#}	1.5 ^d	3503.08	(7/2 ⁻)	1548.505	$(5/2^+, 7/2)$	$\% I\gamma = 0.55 4$ E _y : 1955.61 7 for doublet.
1955.61 ^{d#}	1 <i>d</i>	3772.88	$(7/2^{-})$	1816.23	(3/2 ⁻)	$\kappa_{1\gamma=0.367} 24$ E ₂ : 1955 61.7 for doublet.
1982.4 2	0.70 10	2693.67		711.207	$(5/2^+)$	%Iy=0.26 4
2041.62 9	1.49 9	3772.88	$(7/2^{-})$	1731.04	$(5/2^+, 7/2)$	%Iv=0.55 5
2049.61 ^{ae} 9	1.43 10	3772.88	$(7/2^{-})$	1723.97	$(3/2^{-}, 5/2^{-})$	%Iy=0.53 5
					ST 71 7	•

S

$^{81}_{32}{ m Ge}_{49}$ -5

From ENSDF

$\gamma(^{81}\text{Ge})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	J_i^π	E_f	J_f^π	Comments
2095.6.5	0.6.2	3820.15	(3/2, 5/2, 7/2)	1723.97	$(3/2^{-}, 5/2^{-})$	%Iv=0.22.7
2116.6.2	0.67 10	3665.56	(3/2,3/2,7/2) $(7/2^{-})$	1548.505	$(5/2^+, 7/2)$	$\% I_{\gamma} = 0.25 4$
2125.69 11	2.79 18	3021.39	$(3/2,5/2^{-})$	895.63	$(1/2^{-})$	%Iy=1.03 9
2138.39 5	3.8 2	2138.38	$(5/2^+, 7/2)$	0	$(9/2^+)$	%Iy=1.40 12
2180.66 4	6.7 4	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1832.23	$(3/2^{-}, 5/2^{-})$	%Iy=2.46 22
2216.24 15	1.48 12	3503.08	$(7/2^{-})$	1286.466	$(5/2^+, 7/2^-)$	%Iy=0.54 6
2271.7 2	1.12 11	3820.15	(3/2, 5/2, 7/2)	1548.505	$(5/2^+, 7/2)$	%Iy=0.41 5
2281.72 11	2.54 14	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1731.04	$(5/2^+, 7/2)$	%Iy=0.93 8
2288.58 14	1.98 10	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1723.97	$(3/2^{-}, 5/2^{-})$	%Iy=0.73 6
2311.14 ^{<i>d</i>@}	0.5 ^d	3021.39	(3/2,5/2 ⁻)	711.207	$(5/2^+)$	$\%_{I\gamma}=0.184$ 12 E _y : 2311.14 19 for doublet.
2311 14 ^{d@} 19	1^d	4035 31	$(7/2^{-})$	1723 97	$(3/2^{-} 5/2^{-})$	%Iv=0.367.24
2335.75 13	1.28.9	4168.17	$(3/2^{-})$	1832.23	$(3/2^{-}, 5/2^{-})$	%Iy=0.47.5
^x 2343.15 16	0.50 6		(-1-)		(-1- ,-1-)	%Iy=0.184 25
2362.91 14	1.44 14	3772.88	$(7/2^{-})$	1409.93		%Iy=0.53 6
2379.0 4	1.5 3	3665.56	$(7/2^{-})$	1286.466	$(5/2^+, 7/2^-)$	%Iy=0.55 12
2419.94 15	2.00 16	2419.90		0	$(9/2^+)$	%Iy=0.73 8
2436.54 ^{&} 15	1.30 9	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1577.02		%Iy=0.48 5
2444.15 4	15.0 5	4168.17	$(3/2^{-})$	1723.97	$(3/2^{-}, 5/2^{-})$	%Iy=5.5 4
2464.67 12	1.92 14	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1548.505	$(5/2^+, 7/2)$	%Iy=0.71 7
2541.39 11	1.96 14	3437.23	$(3/2^{-}, 5/2^{-})$	895.63	$(1/2^{-})$	%Iy=0.72 7
2549.93 11	2.00 14	2549.97	$(5/2^+, 7/2)$	0	$(9/2^+)$	%Iy=0.73 7
2552.76 15	0.98 10	4276.77	(3/2,5/2,7/2)	1723.97	$(3/2^{-}, 5/2^{-})$	%Iy=0.36 4
^x 2650.35 16	1.08 10					%Iy=0.40 4
2726.11 9	2.79 14	3437.23	$(3/2^{-}, 5/2^{-})$	711.207	$(5/2^+)$	%Iy=1.03 8
*2754.77 26	1.49 15					%Iy=0.55 7
2771.85 16	0.88 9	4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1241.44	$(1/2^+, 3/2, 5/2^+)$	%Iy=0.32 4
2/92.02 12	1.81 15	3503.08	$(1/2^{-})$	711.207	$(5/2^+)$	%1y=0.677
*2845.8 3	0.93 14	4160.17	(2/2-)	1006 466	(5/0+ 7/0-)	$\% 1\gamma = 0.346$
2881.0 3	0.93 10	4168.17	(3/2)	1286.466	$(5/2^{+}, 1/2^{-})$	$\%1\gamma = 0.34$ 0
2922+	0.2	4470.53	$(7/2^{-})$	1548.505	$(5/2^+,7/2)$	%Iy=0.073 5
2926.4 3	0.44 9	4168.17	$(3/2^{-})$	1241.44	$(1/2^+, 3/2, 5/2^+)$	$\%1\gamma = 0.162.35$
2955.0 ^{&} 2	1.26 15	3665.56	$(7/2^{-})$	711.207	$(5/2^+)$	%Iy=0.46 <i>6</i>
2986.4 2	1.41 17	3697.95	(7/2)	711.207	$(5/2^+)$	%Iγ=0.52 7
^x 3061.7 2	0.98 12					%Iγ=0.36 5
*3169.22 19	0.24 5			005 55	(1 (2 -)	$\%1\gamma = 0.088$ 19
3272.82 17	0.34 5	4168.17	$(3/2^{-})$	895.63	$(1/2^{-})$	%1y=0.125 20
*3448.64 19	1.13 10	41 60 15	(2/2-)	(50.1.)	(1/2+)	%1y=0.42 5
3489.01 10	1.177	4168.17	(3/2)	679.14	$(1/2^{+})$	$\%1\gamma = 0.434$
3503.24 8	8.8 3	3503.08	(7/2)	0	(9/21)	%1Y=3.23 2/

From ENSDF

Comments

$\gamma(^{81}\text{Ge})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	
^x 3539.97 14	0.46 5					%Iγ=0.169 21
3665.54 8	2.96 12	3665.56	$(7/2^{-})$	0	$(9/2^+)$	%Iγ=1.09 8
3697.95 11	1.68 10	3697.95	(7/2)	0	$(9/2^+)$	%Iγ=0.62 5
3773.08 18	1.94 17	3772.88	$(7/2^{-})$	0	$(9/2^+)$	$\%$ I γ =0.71 8
4035.20 7	5.6 4	4035.31	$(7/2^{-})$	0	$(9/2^+)$	$\%$ I γ =2.06 20
4470.4 2	2.16 16	4470.53	$(7/2^{-})$	0	$(9/2^+)$	%Iy=0.79 8

[†] From 1980HoZN. E γ and I γ are also given in the level scheme in 1981Ho24 without their uncertainties. Δ E may be slightly underestimated, since many E γ values fit poorly in the least-squares adjustment.

[‡] Absent in table 9 (1980HoZN), but shown in drawing (1981Ho24).

[#] I γ from drawing (1981Ho24), E γ from table 9 (1980HoZN); I γ =2.46 *16* for doublet (1980HoZN).

[@] I γ from drawing (1981Ho24), E γ from table 9 (1980HoZN); I γ =1.86 15 for doublet (1980HoZN).

[&] E γ for this γ differs by 3σ or 4σ from least-squares adjusted value; the evaluator assumes that either the uncertainty given in 1980HoZN is underestimated or the γ is incorrectly placed in the decay scheme. Consequently, this E γ was excluded from the least-squares energy adjustment for this decay scheme.

^{*a*} E γ is 6σ from least-squares adjusted value; evaluator, therefore, shows its placement as questionable here and excludes it from Adopted Gammas.

^b Additional information 2.

-

^c For absolute intensity per 100 decays, multiply by 0.367 24.

^d Multiply placed with intensity suitably divided.

 e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{81}_{32}\text{Ge}_{49}$

8

 $^{81}_{32}\text{Ge}_{49}$

9

Decay Scheme (continued)

