History											
Туре		Author		Citation	Literature Cutoff Date						
	Full Evaluation M. Shamsuz		zoha Basunia NDS 199,271 (2025)		1-Sep-2024						
$Q(\beta^{-})=6242 \ 3; \ S(n)=4827.7 \ 29; \ S(p)=14357 \ 4; \ Q(\alpha)=-9927.4 \ 28 2021Wa16$ $S(2n)=12910 \ 40, \ S(2p)=27437 \ 3 \ (2021Wa16).$											
⁸¹ Ge Levels											
Cross Reference (XREF) Flags											
				$ \begin{array}{c} \mathbf{A} & {}^{81}\mathrm{Ga}\beta^{-} \\ \mathbf{B} & {}^{82}\mathrm{Ga}\beta^{-} \\ \mathbf{C} & {}^{2}\mathrm{H}({}^{80}\mathrm{Ge} \end{array} $	decay (1.219 s) n decay s,p)						
E(level) [†]	J^{π}	T _{1/2} ‡	XREF		Coi	mments					
0	(9/2+)	6.4 s 2	2 AB	$\%\beta^{-}=100$							
				 J^π: shell model systematics for N=49 nuclei. T_{1/2}: from 2022De07, determined in ⁸¹Ga β⁻ decay (γ ray time distribution measurement) of purified g.s. selected with the double Penning trap JYFLTRAP for the post-trap decay spectroscopy measurements. Isomeric yield (high spin state over total yield) of 0.97 <i>1</i> and 0.92 2 for 25 MeV proton induced fission of ^{nat}U and ²³²Th respectively. 							
				(2018Ra19). Other isomeric yield:	0.975 7 (2019Ra01).					
679.14 <i>4</i>	(1/2 ⁺) [#]	7.6 s 6	ó ABc	%β ⁻ =100 Additional information 1. %IT<1 (1981Ho24). T _{1/2} : the latest measured value of T _{1/2} (g.s.)=6.4 s 2 (2022De07) implies T _{1/2} ≥ 7.0 s (from 7.6 s 6 (1981Ho24)) for the isomeric state. 7.6 s 6 in 1981Ho24 (also in 1982FoZZ), authors were unable to distinguish between two similar (g.s. and isomeric) half-lives in their A=81 multispectrum analysis. Presumably other authors' data also refer to mixtures of the g.s. and isomeric state. Those data are 10.1 s 8 (1972De43), 8.8 s 11 (1974KrZG, 1973KrZN), 7.8 s 2 (1981ZeZY), and							
711.208 22	(5/2+)	3.9 ns	2 ABc	J ^{π} : log <i>ft</i> =6.5 (log <i>f</i> ^{1<i>u</i>} <i>t</i> =8.7) from (5/2 ⁻); γ to (9/2 ⁺); therefore, J ^{π} =(5/2 ⁺ ,7/2,9/2 ⁺). 5/2 ⁺ is favored by systematics since B(E2)(W.u.)=0.038, comparable to that for the analogous 5/2 ⁺ to 9/2 ⁺							
895.63 5	(1/2 ⁻)	<0.5 ns	AB	transition in ⁶⁵ Se. J^{π} : E1 γ to (1/2 ⁺); systematics of N=49 isotones. See comment on							
1241.445 24	(1/2+,3/2,5/2+)		ABC	$J^{(0/9)}$ level). XREF: C(1160). $I^{\pi_1} \approx t_0 (5/2^+); \alpha t_0 (1/2^+)$							
1286.467 <i>23</i> 1303.23 <i>3</i> 1409.93 <i>4</i>	$(5/2^+,7/2^-)$ $(5/2^+,7/2,9/2^+)$		AB A A	J^{π} : γ to $(9/2^{-})$; γ from $(3/2^{-})$ at 4168.17. J^{π} : γ to $(9/2^{+})$; γ from $(3/2^{-})$ at 4168.17. J^{π} : γ to $(9/2^{+})$; log ft =7.5 from $(5/2^{-})$. J^{π} : γ to $(5/2^{+})$, γ from $(7/2^{-})$ at 3773.							
1548.505 24	$(5/2^+, 7/2)$		Α	J^{π} : 1548.5 γ to (9/2 ⁺); log <i>ft</i> =6.5 from (5/2 ⁻).							
1577.02 11 1723.97 5	(3/2 ⁻ ,5/2 ⁻)		A AB	J^{π} : γ to $(1/2^{-})$. γ from $(3/2^{-})$ and $(7/2^{-})$ at 4168.17 and 4035.31,							
1731.04 4	$(5/2^+, 7/2)$		AB	J^{π} : γ to $(9/2^+)$); $\log ft = 6.8$ from $(5/2^{-1})$).					
1805.54 7	$(5/2^+, 7/2)$		A	J^{π} : γ to $(9/2^+)$); $\log ft = 6.8$ from $(5/2^{-1})$	́).					
1816.23 3	(3/2 ⁻)		Α	J^{π} : γ to $(1/2^{+})$), to $(1/2^{-})$ and from (7)	¹ /2 ⁻) at 3772.88.					
1832.23 <i>5</i> 1855.34 <i>5</i>	$(3/2^{-}, 5/2^{-})$		AB A	J ^{<i>n</i>} : log <i>ft</i> =6.5 from (5/2 ⁻); γ to (1/2 ⁻) and γ from (7/2 ⁻) at 3772.88.							

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁸¹Ge Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2138.38 4	$(5/2^+, 7/2)$	A	J^{π} : γ to $(9/2^+)$; log ft=6.7 from $(5/2^-)$.
2174.87 7		Α	
2419.90 4		Α	J^{π} : γ to (9/2 ⁺), γ s from (7/2 ⁻) at 3503.09 and 3772, so $J^{\pi} = (5/2^+, 7/2, 9/2, 11/2^-)$.
2529.30 6	$(3/2, 5/2^{-})$	Α	J^{π} : log ft=6.4 from (5/2 ⁻); γ to (1/2 ⁻).
2549.97 11	$(5/2^+, 7/2)$	AB	J^{π} : γ to $(9/2^+)$; log ft=6.7 from $(5/2^-)$.
2563.18 6	$(3/2, 5/2^{-})$	Α	J^{π} : log ft=6.2 from (5/2 ⁻); γ to (1/2 ⁻).
2693.68 10		Α	J^{π} : log ft=6.7 from (5/2 ⁻) so J \leq 9/2.
2996.72 5	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	AB	J^{π} : log ft=5.6 from (5/2 ⁻).
3021.39 7	$(3/2, 5/2^{-})$	Α	J^{π} : log ft=6.3 from (5/2 ⁻), γ to (1/2 ⁻).
3129.05 6	(3/2,5/2,7/2)	Α	J^{π} : log $ft=6.4$ from $(5/2^{-})$.
3437.23 6	$(3/2^{-}, 5/2^{-})$	AB	J^{π} : log $ft=5.4$ from (5/2 ⁻), γ to (1/2 ⁻).
3503.09 <i>3</i>	$(7/2^{-})$	Α	J^{π} : log ft=5.3 from (5/2 ⁻). γ to (9/2 ⁺).
3665.56 8	$(7/2^{-})$	Α	J^{π} : log $ft=5.8$ from (5/2 ⁻); γ to (9/2 ⁺).
3697.95 10	(7/2)	Α	J^{π} : log ft=6.1 from (5/2 ⁻); γ to (9/2 ⁺) and (5/2 ⁺).
3772.88 4	$(7/2^{-})$	Α	J^{π} : log ft=5.3 from (5/2 ⁻); γ to (9/2 ⁺).
3820.15 19	(3/2, 5/2, 7/2)	Α	J^{π} : log $ft=6.3$ from $(5/2^{-})$.
4012.91 6	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	Α	J^{π} : log <i>ft</i> =5.1 from (5/2 ⁻).
4035.31 7	$(7/2^{-})$	Α	J^{π} : log ft=5.6 from (5/2 ⁻). γ to (9/2 ⁺).
4168.17 6	$(3/2^{-})$	Α	J^{π} : log ft=5.1 from (5/2 ⁻). γ to (1/2 ⁺).
4276.77 16	(3/2,5/2,7/2)	Α	J^{π} : log <i>ft</i> =6.3 from (5/2 ⁻).
4470.53 20	$(7/2^{-})$	Α	J^{π} : log ft=5.86 from (5/2 ⁻); γ to (9/2 ⁺) g.s

[†] From least-squares fit to $E\gamma$, omitting $E\gamma$ for uncertain or doubly-placed lines and for lines whose $E\gamma$ deviates from least-squares adjusted value by at least 3σ (991 γ , 1941 γ , 2436 γ and 2955 γ from 4012.9, 3772.8, 4012.9, and 3665.6 keV levels, respectively.

[‡] From ⁸¹Ga β^- decay (1981Ho24), except where otherwise noted.

[#] $1/2^-$ is expected, based on systematics of J^{π} (isomeric state) in other odd-mass N=49 isotones. However, if $J^{\pi}=1/2^-$, B(M4)(W.u.)<1.4 (low cf. values ranging from 7.0 5 to 19 *I* for seven known M4 transitions between $1/2^-$ and $9/2^+$ states (1979En04)). Therefore, 1981Ho24 presume that the 679 level is the $1/2^+$ level also expected at low energy (based on level energy systematics), and that the $1/2^-$ state is the 896 level which deexcites via an E1 transition to the 679 level.

$\gamma(^{81}\text{Ge})$

Additional information 2.

ω

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult.	α #	Comments
711.208	(5/2+)	711.19 3	100	0	(9/2+)	[E2]	8.42×10 ⁻⁴ 12	B(E2)(W.u.)=0.0383 +21-19 α (K)=0.000751 11; α (L)=7.79×10 ⁻⁵ 11; α (M)=1.161×10 ⁻⁵ 16 α (N)=7.51×10 ⁻⁷ 11
895.63	(1/2 ⁻)	216.47 3	100	679.14	(1/2+)	E1	0.00692 10	$\alpha(K) = 7.51 \times 10^{-5} II$ $\alpha(K) = 0.00619 \ 9; \ \alpha(L) = 0.000634 \ 9;$ $\alpha(M) = 9.43 \times 10^{-5} I3$ $\alpha(N) = 6.01 \times 10^{-6} 8$ Mult.: from $\alpha(K)$ exp. ⁸¹ Ga β^- decay.
1241.445	$(1/2^+, 3/2, 5/2^+)$	530.22 4	100 5	711.208	$(5/2^+)$			I_{γ} : other: 100 44 in ⁸² Ga β^{-} n decay.
		562.37 5	16.5 8	679.14	$(1/2^+)$			I_{γ} : Other: 30 9 in ⁸² Ga β^{-} n Decay.
1286.467	$(5/2^+, 7/2^-)$	1286.39 <i>3</i>	100	0	$(9/2^+)$			
1303.23	$(5/2^+, 7/2, 9/2^+)$	1303.20 <i>3</i>	100	0	$(9/2^+)$			
1409.93		698.69 <i>3</i>	100	711.208	$(5/2^+)$			
1548.505	$(5/2^+, 7/2)$	262.03 4	5.9 4	1286.467	$(5/2^+, 7/2^-)$			
		1548.51 <i>3</i>	100 4	0	$(9/2^+)$			
1577.02		865.81 10	100	711.208	$(5/2^+)$			
1723.97	$(3/2^{-}, 5/2^{-})$	437.42 4	0.75 5	1286.467	$(5/2^+, 7/2^-)$			02
		482.51 <i>3</i>	15.1 8	1241.445	$(1/2^+, 3/2, 5/2^+)$			I_{γ} : other: 22 6 in ⁸² Ga β^- n Decay.
		828.26 5	100 5	895.63	$(1/2^{-})$			I_{γ} : other: 100 28 in ⁸² Ga β^{-} n decay.
1731.04	$(5/2^+, 7/2)$	1019.80 4	100 5	711.208	$(5/2^+)$			
1005 54	(5/0+ 7/0)	1730.95 7	22.3 12	0	$(9/2^+)$			
1805.54	$(5/2^+, 1/2)$	256.6 3	35 /	1548.505	$(5/2^+, 1/2)$			
		501.90 17	/3 8	1303.23	$(5/2^+, 1/2, 9/2^+)$			
1916 22	$(2/2^{-})$	574.82.5	100 0	1241 445	$(9/2^{+})$ $(1/2^{+} 2/2 5/2^{+})$			
1810.23	(3/2)	020 7 3	13 1	805.63	(1/2, 3/2, 3/2) $(1/2^{-})$			
		1104 93 9	49 4	711 208	(1/2) $(5/2^+)$			
		1137 07 4	79 4	679.14	$(1/2^+)$			
1832.23	$(3/2^{-}, 5/2^{-})$	936.62.4	100	895.63	$(1/2^{-})$			
1855.34	(-1- ,-1-)	613.89 4	100.8	1241.445	$(1/2^+, 3/2, 5/2^+)$			
		1144	62	711.208	$(5/2^+)$			
2138.38	$(5/2^+, 7/2)$	728.32 6	42 4	1409.93	×, /			
		2138.39 5	100 5	0	$(9/2^+)$			
2174.87		626.36 6	100 8	1548.505	$(5/2^+, 7/2)$			
		933	83	1241.445	$(1/2^+, 3/2, 5/2^+)$			
2419.90		1116.63 5	100 6	1303.23	$(5/2^+, 7/2, 9/2^+)$			
		2419.94 15	63 5	0	$(9/2^+)$			

From ENSDF

 $^{81}_{32}{
m Ge}_{49}$ -3

 $\gamma(^{81}\text{Ge})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Comments
2529.30	$(3/2, 5/2^{-})$	805.32 5	85 4	1723.97	$(3/2^{-}, 5/2^{-})$	
	(-1)-1)	1633.47 9	100 6	895.63	$(1/2^{-})$	
		1818.15 7	22.1 17	711.208	$(5/2^+)$	
2549.97	$(5/2^+, 7/2)$	2549.93 11	100	0	$(9/2^+)$	
2563.18	$(3/2, 5/2^{-})$	730.84 5	98 <i>5</i>	1832.23	$(3/2^{-}, 5/2^{-})$	
		1667.61 6	100 5	895.63	$(1/2^{-})$	
		1852.37 15	57 5	711.208	$(5/2^+)$	
2693.68		962.64 11	100 6	1731.04	$(5/2^+, 7/2)$	
		1982.4 2	65 9	711.208	$(5/2^+)$	
2996.72	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	1164.53 3	19.4 11	1832.23	$(3/2^{-}, 5/2^{-})$	
		1272.71 3	100 5	1723.97	$(3/2^{-}, 5/2^{-})$	
		1448.25 7	7.6 5	1548.505	$(5/2^+,7/2)$	
		1710.2.2	11 4	1286.467	$(5/2^+, 7/2^-)$	
3021.39	(3/2,5/2)	1189.16 6	573	1832.23	(3/2,5/2)	
		2125.69 11	100 8	895.63	(1/2)	
		2311.14	18 ^w	711.208	$(5/2^+)$	E_{γ} : 2311.14 <i>19</i> for doublet.
3129.05	(3/2, 5/2, 7/2)	1405.07 4	100	1723.97	$(3/2^{-}, 5/2^{-})$	
3437.23	$(3/2^{-}, 5/2^{-})$	1604.93 7	14.4 8	1832.23	$(3/2^{-}, 5/2^{-})$	
		1713.26 4	100 4	1723.97	$(3/2^{-}, 5/2^{-})$	I_{γ} : other: 43 14 in ⁸² Ga β -n Decay.
		2541.39 11	19.0 14	895.63	$(1/2^{-})$	00
		2726.11 9	27.1 14	711.208	$(5/2^+)$	I_{γ} : other: 100 29 in ⁸² Ga β^{-} n Decay.
3503.09	$(1/2^{-})$	1083.22 6	25.2 14	2419.90	(2) (2- 5) (2-)	
		16/1.4 4	3.9.9	1832.23	$(3/2^-, 5/2^-)$	
		17/9.05 3	58 3	1723.97	(3/2 ,5/2)	
		1955.61	17 ^w	1548.505	$(5/2^+, 7/2)$	E_{γ} : 1955.61 7 for doublet.
		2216.24 15	16.8 14	1286.467	$(5/2^+, 7/2^-)$	
		2792.02 12	20.6 17	711.208	$(5/2^+)$	
2665 56	(7/2-)	3503.24 8	100.6	0	$(9/2^+)$	
3005.50	(1/2)	2110.0 2	23 3	1048.000	$(5/2^+, 1/2)$	
		23/9.04	51 10	1280.467	$(5/2^{+}, 1/2^{-})$	
		2955.0 ⁺ 2	43 5	711.208	$(5/2^+)$	
2607.05	(5.10)	3665.54 8	100 4	0	$(9/2^+)$	
3697.95	(1/2)	2986.4 2	84 10	711.208	$(5/2^+)$	
2772.00	(7/2)	3697.95 11	100.6	0	$(9/2^+)$	
3772.88	(1/2)	1/0.21 4	100 0	2996.72	(3/2,5/2,1/2)	
		1352.8/ /	9/0	2419.90		
		1940.97 ⁺⁰ 6	84 4	1832.23	$(3/2^{-}, 5/2^{-})$	
		1955.61 ^{@ &}	29 [@]	1816.23	$(3/2^{-})$	E_{γ} : 1955.61 7 for doublet.
		2041.62 9	43 3	1731.04	$(5/2^+, 7/2)$	
		2362.91 14	41 4	1409.93		

4

From ENSDF

$\gamma(^{81}\text{Ge})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	${f J}_f^\pi$
3772.88	$(7/2^{-})$	3773.08 18	55 5	0	$(9/2^+)$
3820.15	(3/2, 5/2, 7/2)	2095.6 5	54 18	1723.97	$(3/2^{-}, 5/2^{-})$
		2271.7 2	100 10	1548.505	(5/2+,7/2)
4012.91	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	991.06 ^{‡&} 7	27.0 18	3021.39	$(3/2, 5/2^{-})$
		1016.42 14	37 4	2996.72	$(3/2^{-}, 5/2^{-}, 7/2^{-})$
		1483.45 12	11.6 7	2529.30	$(3/2, 5/2^{-})$
		1874.36 9	43.6 24	2138.38	$(5/2^+, 7/2)$
		2180.66 4	100 6	1832.23	$(3/2^{-}, 5/2^{-})$
		2281.72 11	37.9 21	1731.04	$(5/2^+, 7/2)$
		2288.58 14	29.6 15	1723.97	$(3/2^{-}, 5/2^{-})$
		2436.54 ^{‡&} 15	19.4 <i>13</i>	1577.02	
		2464.67 12	28.7 21	1548.505	$(5/2^+, 7/2)$
		2771.85 16	13.1 <i>13</i>	1241.445	$(1/2^+, 3/2, 5/2^+)$
4035.31	$(7/2^{-})$	2311.14 ^{@&} 19	18 [@]	1723.97	(3/2 ⁻ ,5/2 ⁻)
		4035.20 7	100 7	0	$(9/2^+)$
4168.17	$(3/2^{-})$	2335.75 13	8.5 6	1832.23	$(3/2^{-}, 5/2^{-})$
		2444.15 4	100 3	1723.97	$(3/2^{-}, 5/2^{-})$
		2881.6 <i>3</i>	6.2 11	1286.467	$(5/2^+, 7/2^-)$
		2926.4 <i>3</i>	2.9 6	1241.445	$(1/2^+, 3/2, 5/2^+)$
		3272.82 17	2.3 3	895.63	$(1/2^{-})$
		3489.01 10	7.8 5	679.14	$(1/2^+)$
4276.77	(3/2,5/2,7/2)	2552.76 15	100	1723.97	$(3/2^{-}, 5/2^{-})$
4470.53	$(7/2^{-})$	2922	9	1548.505	$(5/2^+, 7/2)$
		4470.4 2	100 7	0	$(9/2^+)$

S

[†] From ⁸¹Ga β⁻ decay.
[‡] Eγ lies at least 3σ from least-squares adjusted value; datum excluded from least-squares level energy adjustment.
[#] Additional information 3.
[@] Multiply placed with intensity suitably divided.
[&] Placement of transition in the level scheme is uncertain.

Legend Level Scheme Intensities: Relative photon branching from each level

@ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{81}_{32}\text{Ge}_{49}$

⁸¹₃₂Ge₄₉

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

⁸¹₃₂Ge₄₉