Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024	

 $Q(\beta^{-})=14290 \text{ syst}; S(n)=3300 \text{ syst}; S(p)=15960 \text{ syst}; Q(\alpha)=-12430 \text{ syst}$ 2021Wa16

 $S(2n)=5650 \ 320, \ Q(\beta^{-}n)=11670 \ 300 \ (syst, 2021Wa16).$

Slightly edited version of the one evaluated by B. Singh for ENSDF, dated: 31-Jul-2014.

2010Oh02: ⁸¹Cu nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ⁸¹Cu nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility.

Based on A/Q spectrum and Z versus A/Q plot, 36 counts were assigned to ⁸¹Cu isotope. (Q=charge state).

2014Xu07: ⁸¹Cu nuclide produced in ⁹Be(²³⁸U,F) reaction with a ²³⁸U⁸⁶⁺ beam of 345 MeV/nucleon produced at the RIKEN accelerator complex. Separation of ⁸¹Cu nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments (ΔE -B ρ -tof method) using BigRIPS fragment separator and and ZeroDegree Spectrometer (ZDS) at RIBF-RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot. Measured heavy fragment, β and γ spectra using wide-range active silicon strip stopper array (WAS3ABi) for beta and ion detection, and EUROBALL-RIKEN Cluster array for γ detection. Decay curves were obtained from time differences between implantation and correlated β decays.

2005Bo19: calculated half-life, β -delayed neutron emission probability.

Additional information 1.

⁸¹Cu Levels

E(level)	T _{1/2}	Comments	
, , ,		\mathbf{F}	
		Theoretical $\%\beta^-n=80$, $\%\beta^-2n=6$ (2019Mo01); $\%\beta^-n=100$ (2002Pf04).	
		Only β^- decay mode has been observed in 2014Xu07.	
		E(level): the observed activity is assumed to be in its ground state.	
		J^{π} : 5/2 ⁻ from systematics (2021Ko07), 1/2 ⁻ in theoretical calculations (2019Mo01).	
	$T_{1/2}$: from 2014Xu07, decay curve of time difference between implantations and correlated β decays		
		using maximum likelihood (MLH) method and including half-lives of parent, daughter, and	
		grand-daughter nuclei together with β -delayed neutron emission channels.	
		Measured production σ =70 pb 35 (2010Oh02).	

 $[\]Delta Q(\beta^{-})=300, \Delta S(n)=420, \Delta S(p)=670, \Delta Q(\alpha)=670$ (syst,2021Wa16).