⁸¹Kr ε decay (2.29×10⁵ y) 1988Ax01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Coral M. Baglin	NDS 109, 2257 (2008)	15-Aug-2008				

Parent: ⁸¹Kr: E=0; $J^{\pi}=7/2^+$; $T_{1/2}=2.29\times10^5$ y *11*; $Q(\varepsilon)=280.8$ 5; % ε decay=100.0 Others: 1974Ch40, 1972ScYQ.

1988Ax01: ⁸¹Kr from ⁸¹Rb (4.576 h) decay; Ge, NaI and proportional counters; measured I(276γ), I(Br x rays), γ-x ray coin, M/L capture ratio.

1972ScYQ, 1974Ch11: ⁸¹Kr from ⁸⁰Kr(n,γ), enriched target. Measured withGe(Li) and Si(Li) (1972ScYQ), or proportional counter (1974Ch40).

⁸¹Br Levels

E(level) [†]	J ^π ‡
0	3/2-
275.991 11	$5/2^{-}$

[†] From $E\gamma$.

[‡] From Adopted Levels.

 ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(4.8 5)	275.991	0.30 2	9.35 15	 EL=0.69 3; εM+=0.31 3 Ie: from measured I(276γ)/I(Br K x ray)=0.30 2 (1988Ax01). E(decay): from measured ε_M/ε_L=0.42 5, 1988Ax01 deduce E=4.7 5 assuming capture ratios from allowed decay theory are applicable to this highly hindered first forbidden nonunique transition.
(280.8 5)	0	99.70 2	11.014 ¹ <i>u</i> 22	 εK=0.84731 9; εL=0.12712 8; εM+=0.02557 2 Iε: 100% minus branch to 276 level (0.30% 2). E(decay): measured εL(exp)/εK(exp)=0.146 5 (1974Ch40); this corresponds to the theoretical ratio for Q(ε)=305 +35-29.

[†] Absolute intensity per 100 decays.

 $\gamma(^{81}\text{Br})$

I γ normalization: 0.00298 20 from measured ε branching to 276 level=0.30% 2 (1988Ax01) and adopted α (276 γ). This conflicts with I γ normalization=0.036 4 implied by measured I(276 γ)/I(K x-ray, Br)=0.068 8 (1972ScYQ), assuming fluorescence yield (Br)=0.618 19, K-capture to total-capture ratio=0.847, α =0.0112.

$$\frac{E_{\gamma}^{\dagger}}{275.990 \ 11} \quad \frac{I_{\gamma}^{\ddagger}}{100} \quad \frac{E_{i}(\text{level})}{275.991} \quad \frac{J_{i}^{\pi}}{5/2^{-}} \quad \frac{E_{f}}{0} \quad \frac{J_{f}^{\pi}}{3/2^{-}} \quad \frac{\text{Mult.}}{\text{M1+E2}} \quad \frac{\delta}{-0.10 \ 3} \quad \frac{\alpha^{\#}}{0.00816 \ 15} \quad \frac{Comments}{\alpha(\text{K})=0.00724 \ 13; \ \alpha(\text{L})=0.000781 \ 15; \ \alpha(\text{M})=0.0001242 \ 23; \ \alpha(\text{N}+..)=1.158\times10^{-5} \ 21}{\alpha(\text{N})=1.158\times10^{-5} \ 21}$$

[†] From 1972ScYQ.

[‡] For absolute intensity per 100 decays, multiply by 0.00298 20.

⁸¹Kr ε decay (2.29×10⁵ y) 1988Ax01 (continued)

$\gamma(^{81}Br)$ (continued)

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁸¹Kr ε decay (2.29×10⁵ y) 1988Ax01

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

