	Hi	story		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024	

Parent: ⁸¹Kr: E=0; $J^{\pi}=7/2^+$; $T_{1/2}=2.13\times10^5$ y +16-26; Q(ε)=280.9 5; % ε decay=100

⁸¹Kr-J^{π},T_{1/2}: from ⁸¹Se Adopted Levels.

⁸¹Kr-Q(ε): from 2021Wa16.

Others: 1974Ch40, 1972ScYQ, 2010Mi21, 2017Ra27, 2018Ga29.

1988Ax01: ⁸¹Kr from ⁸¹Rb (4.576 h) decay; Ge, NaI and proportional counters; measured I(276γ), I(Br x rays), γ-x ray coin, M/L capture ratio.

1972ScYQ, 1974Ch11: ⁸¹Kr from ⁸⁰Kr(n,γ), enriched target. Measured with Ge(Li) and Si(Li) (1972ScYQ), or proportional counter (1974Ch40).

2017Ra27, 2018Ga29: Detection of triple coincidences of two fluorescence photons and low-energy 'shaked' electrons (cascades of Auger electrons or Auger electrons + an ejected K-electron) emitted when double K-shell vacancy is caused in rare decay processes in ⁸¹Se decay. Measurements were carried out for several years at the deep-underground low-background laboratory of the Baksan Neutrino Observatory (BNO), Institute for Nuclear Research of the Russian Academy of Sciences, Neutrino, at a depth of 4900 m w.e. (water equivalent) depth. A large low-background proportional counter (LPC), filled with the krypton sample was used to detect triple coincidences of 'shaked' electrons and two fluorescence photons. In the study of ⁸¹Kr ε decay, cosmogenic radioisotope ⁸¹Kr with a volume activity of 0.076 4/minute/liter Kr was contained in the original atmospheric krypton. The source activity was $\approx 4 \varepsilon$ decays/min. Data were collected for 1167 days of live measurement. Deduced probability of K-shell vacancies per K-electron capture, produced as a result of the shake-off process.

⁸¹Br Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0	3/2-		In 2010Mi21, total intensity of K component of the radiative electron capture (REC) was measured to be 1.2×10^{-4} <i>I</i> and 1.64×10^{-4} <i>8</i> from two measurements, with an average value of 1.42×10^{-4} 22 per K capture.
275.991 <i>11</i>	$5/2^{-}$	9.7 ps 14	

[†] From $E\gamma$.

[‡] From Adopted Levels.

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(4.9 11)	275.991	0.30 2	9.35 15	$\varepsilon L=0.69 \ 3; \ \varepsilon M+=0.31 \ 3$
				E(decay): from measured $\varepsilon_{M}/\varepsilon_{L}=0.425$, 1988Ax01 deduce E=4.75 assuming capture ratios from allowed decay theory are applicable to this highly hindered first forbidden nonunique transition.
				I ε : from measured I(276 γ)/I(Br K x ray)=0.30 2 (1988Ax01).
(280.9 15)	0	99.70 <i>2</i>	10.98 ¹ <i>u</i> 5	εK=0.84731 9; εL=0.12712 8; εM+=0.02557 2
				IE: 100% minus branch to 276 level (0.30% 2).
				E(decay): measured $\varepsilon L(exp)/\varepsilon K(exp)=0.146$ 5 (1974Ch40); this corresponds to the theoretical ratio for $Q(\varepsilon)=305 + 35-29$.
				2017Ra27, 2018Ga29 report measurement of probability of K-shell vacancies per K-electron capture $P_{KK}=5.7\times10^{-5}$ 8(stat) 4(syst) (2017Ra27,2018Ga29), deduced from a total of 42 7(stat) 3(syst) triple-coincidence events related to
				double-K-shell-vacancy production.

[†] Absolute intensity per 100 decays.

⁸¹Kr ε decay (2.13×10⁵ y) 1988Ax01 (continued)

$\gamma(^{81}\text{Br})$

I γ normalization: 0.00299 20 from measured ε branching to 276 level=0.30% 2 (1988Ax01) and adopted α (276 γ). This conflicts with I γ normalization=0.036 4 implied by measured I(276 γ)/I(K x-ray, Br)=0.068 8 (1972ScYQ), assuming fluorescence yield (Br)=0.618 19, K-capture to total-capture ratio=0.847, α =0.0112.

 $\frac{E_{\gamma}^{\dagger}}{275.990 \ II} \quad \frac{I_{\gamma}^{@}}{100} \quad \frac{E_{i}(\text{level})}{275.991} \quad \frac{J_{i}^{\pi}}{5/2^{-}} \quad \frac{E_{f}}{0} \quad \frac{J_{f}^{\pi}}{3/2^{-}} \quad \frac{\text{Mult.}^{\ddagger}}{\text{M1+E2}} \quad \frac{\delta^{\ddagger}}{-0.10 \ 3} \quad \frac{\alpha^{\#}}{0.00816 \ I4} \quad \frac{Comments}{\alpha(\text{K})=0.00724 \ I3; \ \alpha(\text{L})=0.000781 \ I4; \ \alpha(\text{M})=0.0001242 \ 23}{\alpha(\text{N})=1.158\times10^{-5} \ 2I}$

[†] From 1972ScYQ.

[‡] From Adopted Gammas.

[#] Additional information 1.

[@] For absolute intensity per 100 decays, multiply by 0.00299 20.

⁸¹Kr ε decay (2.13×10⁵ y) 1988Ax01

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

