Coulomb excitation 1996Ja09,1985Si08,1972Ro27

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

Others: 1957Wo32, 1968An12, 1969Sa23, 1974Co11. 1996Ja09: ²⁸Si(⁸¹Br,⁸¹Br' γ): E(⁸¹Br=210 MeV), multilayer natural Si on Gd+Ta+Al; measured $\gamma(\theta,H,T)$, Si- γ coin, DSAM; deduced g, $T_{1/2}$, δ ; particle-vibrator and particle-rotor coupling model calculations.

1985Si08: (p,p' γ): E(p)=2.5 MeV, natural target, Ge(Li) at θ =55°; measured E γ , B(E2).

1972Ro27: $(\alpha, \alpha' \gamma)$: E α =2.5-8.2 MeV, 99.6% ⁸¹Br target; measured E γ , I γ , $\gamma(\theta)$ (θ =0°, 90°; A₂=0 expected for J=1/2 or 3/2 excited states), one triple angular correlation, excit.

 $({}^{16}O, {}^{16}O'\gamma)$: 1972Ro27; E $({}^{16}O)$ =33 MeV; measured Doppler broadening.

⁸¹Br Levels

B(E2) determined from absolute γ -ray yields.

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\&}$	Comments		
0 ^{<i>a</i>}	3/2-	stable	J^{π} : from Adopted Levels.		
275.97 ^{<i>a</i>} 16	5/2-#	9.7 ps <i>14</i>	 B(E2)↑=0.0508 25; g=0.64 20 J^π: 5/2 from 276γ(θ) (1972Ro27), M1+E2 γ to 3/2⁻. g-factor: from γ(θ,H,T), corrected for feeding from the 837 level (1996Ja09). T_{1/2}: from τ=14 ps 2 (1996Ja09 (DSAM)), applying a small correction for feeding from the 837 level. However, most of the 276γ intensity (≈84%) results from direct excitation of the 275 level. T_{1/2}=10 ps ⁷⁻⁵ from adopted 276γ properties and B(E2)↑. B(E2): weighted average of 0.0514 27 (1972Ro27) and 0.0503 25 (1985Si08). Others: 0.041 4 (1969Sa23, relative to B(E2)[⁷⁹Br, 217 level]=0.040 3), 0.049 10 (1968An12), 0.029 5 (1957Wo32). 		
538.2 3	1/2-,3/2-@	0.76 ps <i>3</i>	 B(E2)↑=0.0085 5 J^π: 538γ(θ) also allows J=5/2, but implied δ=-0.19 4 or +10 (1972Ro27) is inconsistent with δ=0.059 <i>I</i> deduced from B(E2) and T_{1/2} assuming J=5/2. T_{1/2}: from τ=1.09 ps 4 (1996Ja09 (DSAM)). Other: 0.60 ps <i>I3</i> (1972Ro27 - from τ=0.87 ps <i>I9</i>). B(E2): Same value in 1972Ro27 and 1985Si08. 		
566.1 <i>3</i>	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻		$B(E2)\uparrow=0.0035 \ 10$ B(E2): unweighted average of 0.0025 2 (1972Ro27) and 0.0044 3 (1985Si08). Other: 0.031 7 (1968An12) (possibly based on combined yields of 561 γ and 566 γ (1972Ro27)).		
650.0 4	1/2 ⁻ ,3/2 ⁻ ,5/2 [@]	2.6 ps 3	 B(E2)↑=0.00226 13 T_{1/2}: from τ=3.8 ps 4 (1996Ja09). Others: 3.6 ps +10-19 (1972Ro27 - from τ=5.2 ps 14-27), 2.6 ps 4 from B(E2)↑ and adopted γ-ray properties. B(E2): weighted average of 0.00224 13 (1972Ro27) and 0.0023 2 (1985Si08). 		
767.2 3	(5/2) ^{-@}	0.54 ps 4	B(E2) [↑] =0.0315 <i>16</i> ; g=0.38 <i>15</i> g-factor: from $\gamma(\theta, H, T)$ (1996Ja09). B(E2): weighted average of 0.0301 <i>16</i> (1972Ro27) and 0.0340 <i>23</i> (1985Si08), and 0.04 <i>1</i> (1968An12). T _{1/2} : weighted average of 0.55 ps <i>3</i> (1996Ja09 – authors' recommended value based on T _{1/2} =0.53 ps <i>3</i> (491 γ) and 0.561 ps <i>14</i> (767 γ)) and 0.42 ps <i>9</i> (1972Ro27). Other: 0.57 ps 6 from B(E2)↑ and adopted 767.2 γ -ray properties. J [#] : not 7/2 from 767 $\gamma(\theta)$; probably not 3/2 based on apparently non-zero A ₂ for 767 $\gamma(\theta)$ (1972Ro27).		
828.5 <i>3</i>	3/2 ^{-#}	0.46 ps 7	B(E2) \uparrow =0.0094 <i>10</i> J ^{π} : from Adopted Levels. T _{1/2} : weighted average of 0.49 ps 7 (1996Ja09 – from τ =0.7 ps <i>1</i>) and 0.36 ps <i>12</i>		

Continued on next page (footnotes at end of table)

Coulomb excitation 1996Ja09,1985Si08,1972Ro27 (continued)

⁸¹Br Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\&}$	Comments					
836.5 ^{<i>a</i>} 3		1.05 ps 7	(1972Ro27 – from τ =0.52 ps 17). B(E2): weighted average of 0.0087 10 (1972Ro27) and 0.0103 12 (1985Si08). 1972Ro27 datum derived from 552 γ yield assuming I(828 γ)/I(552 γ)=3.0 2 (cf. adopted value of 3.1 3) because 828 γ was believed to include a contaminant.					
	7/2-@		B(E2)↑=0.058 5; g=0.41 11 J ^π : also from beam-561 γ -276 $\gamma(\theta)$ and 561 $\gamma(\theta)$ (1972Ro27). T _{1/2} : weighted average of 1.04 7 (1996Ja09, DSAM, based on 1.05 ps 4 from 561 γ and 1.04 ps 7 from 837 γ) and 1.29 ps +34–28 from B(E2) and adopted 837 γ branching. Other: 0.64 ps 15 from Doppler broadening of 561 γ (1972Ro27); inconsistent with aforementioned values.					
1322.8 5	(5/2)-	≤0.31 ps	 B(E2): from 1985Si08. Others: 0.050 <i>17</i> (1968An12); 0.067 <i>10</i> (1972Ro27 datum, as recalculated by the evaluator from authors' data using adopted branching of 27% 8 for the 836γ; 1972Ro27 report 0.055 <i>4</i> based on yield of the 561γ and T_{1/2} from their DSAM measurements). g-factor: from γ(θ,H,T) (1996Ja09). B(E2)↑=0.0123 <i>16</i> J^π: from Adopted Levels. T_{1/2}: ≤0.20 ps, ≤0.31 ps, 0.33 ps <i>8</i> for J=3/2, 5/2, 7/2, respectively, from B(E2) and adopted branching; listed value is for the adopted J=5/2. B(E2) from 1972Ro27. Level not reported in 1985Si08. 					

[†] From a least-squares fit to $E\gamma$.

[‡] Since the mode of excitation is believed to be E2 and $J^{\pi}(g.s.)=3/2^{-}$, all directly excited states are expected to have odd parity and J=1/2 to 7/2. J is further limited based on $\gamma(\theta)$.

[#] B(E2) for this level is predicted accurately by particle-rotor model, but not by particle-vibrator model (1996Ja09).

^(a) Based on particle-vibrator-core model, which predicts B(E2) for this level more accurately compared to the particle-rotor-core model, this state can be described by a wave function which contains a significant contribution from configuration: $\pi p_{3/2}$ coupled to 2⁺ core (1996Ja09).

& From DSAM in 1996Ja09. In 1972Ro27, the deduced $T_{1/2}$ from Doppler broadening of γ -ray peaks and their stated $\Delta T_{1/2}$ includes the uncertainty in the fit and $\pm 20\%$ for uncertainty in the stopping power.

^a Band(A): Possible g.s. band (1972Ro27).

$\gamma(^{81}{ m Br})$

ω

Additional information 1. Yield measured at θ =55°. $\gamma\gamma$ measurement at θ =0° and 90°. NaI and Ge(Li) detectors (1972Ro27).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	lpha f	Comments
275.97	5/2-	275.9 2	100	0	3/2-	M1+E2	-0.10^{d} 3	0.00817 15	α(K)=0.00725 13; α(L)=0.000782 14; α(M)=0.0001243
500.0	1/0= 0/0=	500 0 0	100	0	2 /2 -		0.007.15	1 (2, 10-3, 2	23 $\alpha(N)=1.159\times10^{-5}$ 21 Additional information 2.
538.2	1/2 ,3/2	538.2 3	100	0	3/2	M1+E2	0.087 15	1.63×10 ⁻⁵ -2	$\alpha(K)=0.001454\ 21;\ \alpha(L)=0.0001540\ 22;\ \alpha(M)=2.448\times10^{-5}\ 35$ $\alpha(N)=2.293\times10^{-6}\ 32$ δ : average of $abs(\delta)=0.102\ 4$ if J=1/2, 0.072 3 if J=3/2
									(from B(E2) and $T_{1/2}$). Additional information 3
566.1	3/2-,5/2-,7/2-	290.0 <i>3</i>	74 2	275.97	5/2-	D+Q	е		I_{γ} : weighted average of 76 4 (1972Ro27) and 74 2 (1985Si08).
		566.2 4	26 2	0	3/2-	M1+E2		0.00175 30	α (K)=0.00155 26; α (L)=0.000167 30; α (M)=2.6×10 ⁻⁵ 5 α (N)=2.5×10 ⁻⁶ 4 I_{γ} : weighted average of 24 4 (1972Ro27) and 26 2
650.0	1/23/25/2	650.0 4	100	0	3/2-	M1+E2	0.111 7	$1.07 \times 10^{-3} 2$	(1985Si08). $\alpha(K)=0.000950 \ 13; \ \alpha(L)=0.0001003 \ 14;$
					-1-				α (M)=1.593×10 ⁻⁵ 22 α (N)=1.493×10 ⁻⁶ 21 δ : from B(E2)1 and T _{1/2} assuming I=3/2: abs(δ)=0.157
									<i>10</i> if $J=1/2$. A ₂ from $\gamma(\theta)$ consistent with 0, as expected for $J=1/2$ or $3/2$.
767.2	(5/2)-	491.2 <i>3</i>	16 [@] 3	275.97	5/2-	M1+E2	+0.25 13	0.00208 8	$\alpha(K)=0.00185\ 7;\ \alpha(L)=0.000196\ 8;\ \alpha(M)=3.12\times10^{-5}\ 13$ $\alpha(N)=2.92\times10^{-6}\ 12$
									I_{γ} : unweighted average of 13 <i>l</i> (1972Ro27) and 19 <i>2</i> (1985Si08).
									δ: +0.25 <i>13</i> or $-3.2 $ + <i>10</i> -22 from $γ(θ)$ (1972Ro27); the latter solution implies B(E2)(W.u.)>180, making it less plausible.
		767 2 4	84 [@] 3	0	3/2-	M1+F2	-0.260.13	7.48×10^{-4} 11	Additional information 4. $A_{2}=+0.102.9$, $A_{4}=-0.065.22.(1996I_{2}09)$
		101.2 4	5 5	0	5/2	14117122	0.200 15	7. 1 0A10 <i>11</i>	$\alpha(K)=0.000666 \ 9; \ \alpha(L)=7.01\times10^{-5} \ 10; \\ \alpha(M)=1.113\times10^{-5} \ 16 \\ \alpha(N)=1.044\times10^{-6} \ 15$

Coulomb excitation 1996Ja09,1985Si08,1972Ro27 (continued)								2Ro27 (continued)	
$\gamma(^{81}\text{Br})$ (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	δ^{c}	α^f	Comments
									I _γ : unweighted average of 87 <i>l</i> (1972Ro27) and 81 <i>2</i> (1985Si08). δ: absolute value from B(E2) and T _{1/2} , if J(767 level)=5/2; sign from $\gamma(\theta)$ in 1972Ro27. Other: -0.16 <i>3</i> or +7.8 from $\gamma(\theta)$ (1972Ro27); 0.33 <i>5</i> from $\gamma(\theta)$ measurements (A ₂ and A ₄) in 1996Ja09. Additional information 5.
828.5	3/2-	552.5 3	23 ^{&} 3	275.97	5/2-	M1+E2		0.00187 33	$\alpha(K)=0.00166\ 29;\ \alpha(L)=0.000178\ 34;\ \alpha(M)=2.8\times10^{-5}\ 5$ $\alpha(N)=2.6\times10^{-6}\ 5$ $I_{\gamma}:\ in\ 1985Si08:\ 24\ 3.\ See\ footnote.$
		828.7 [‡] 5	72 ^{&} 3	0	3/2-	M1+E2	0.18 3	6.29×10 ⁻⁴ 9	α (K)=0.000560 8; α (L)=5.88×10 ⁻⁵ 8; α (M)=9.34×10 ⁻⁶ 13 α (N)=8.76×10 ⁻⁷ 12 I_{γ} : in 1985Si08: 76 3. See footnote. Additional information 6.
836.5	7/2-	560.6 3	82 ^{<i>a</i>} 6	275.97	5/2-	M1+E2	-0.193 12	1.51×10 ⁻³ 2	A ₂ =+0.173 <i>18</i> ; A ₄ =+0.011 <i>8</i> (1996Ja09) $\alpha(K)$ =0.001340 <i>19</i> ; $\alpha(L)$ =0.0001420 <i>20</i> ; $\alpha(M)$ =2.256×10 ⁻⁵ <i>32</i> $\alpha(N)$ =2.112×10 ⁻⁶ <i>30</i> I _{\gamma} : unweighted average of 87 <i>4</i> (1972Ro27) and 76 <i>4</i> (1985Si08). δ : -0.193 <i>12</i> from A ₂ for 561 $\gamma(\theta)$ combined with beam-561 γ -276 γ triple angular correlation data (1972Ro27); 0.30 <i>4</i> (1996Ja09) from $\gamma(\theta)$. Additional information 7.
1322.8	(5/2)-	486.4 <i>4</i>	19 ^{‡a} 6 26 6	0 836.5	3/2 ⁻	E2		7.06×10 ⁻⁴ 10	A ₂ =+0.351 25; A ₄ =-0.07 4 (1996Ja09) $\alpha(K)=0.000627$ 9; $\alpha(L)=6.68\times10^{-5}$ 9; $\alpha(M)=1.059\times10^{-5}$ 15 $\alpha(N)=9.86\times10^{-7}$ 14 I _γ : unweighted average of 13 4 (1972Ro27) and 24 4 (1985Si08). Mult.: stretched Q from $\gamma(\theta)$ measurements (1996Ja09). Other $\gamma(\theta)$ in 1972Ro27. Additional information 8. I _γ : from 1972Ro27.
		1046.1 <i>10</i> (1322.8)	74 6	275.97 0	5/2 ⁻ 3/2 ⁻				I_{γ} : from 19/2Ro27. Expected but not observed; $E\gamma$ from level energy difference.

4

[†] From 1972Ro27, except as noted. [‡] In 1972Ro27, the observed yield may not result entirely from Coulomb excitation of ⁸¹Br; γ yield agrees with Coulomb excitation theory but $abs(A_2)$ from $\gamma(\theta)$ is too large cf. theory. Contaminant suspected by 1972Ro27, but observed γ peak exhibits no broadening (so contaminant E γ differs by <1 keV). I γ (828)/I γ (561) is

 $^{81}_{35}\mathrm{Br}_{46}$ -4

Coulomb excitation 1996Ja09,1985Si08,1972Ro27 (continued)

$\gamma(^{81}\text{Br})$ (continued)

consistent with values from 1985Si08 and from $(n,n'\gamma)$ and in-beam studies.

- [#]% photon branching. Weighted average data in 1972Ro27 and 1985Si08, except where otherwise noted.
- [@] Weighted average of data in 1972Ro27, 1974Co11 and 1985Si08. Data do not agree within authors' stated uncertainties.
- [&] Deduced by evaluator from I(553γ):I(829γ) in 1985Si08, assuming unobserved 178γ, 290γ together constitute 5.5% of branching from this level (from Adopted Levels); 178γ (1.5% 2 branch) not observed in Coulomb excitation and 290γ (4.0% 4 branch) not resolved in Coulomb excitation from 290γ deexciting 566 level. Other: 1974Co11.
- ^{*a*} From γ -ray yields (1972Ro27). Others: I $\gamma(836\gamma)/I\gamma(560\gamma)=(24 4)/(76 4)$ (1985Si08), (27 5)/(73 5) (1974Co11); all these values are consistent with branching in $(\alpha, p\gamma)$ and $(n, n'\gamma)$ reactions. I $\gamma(836\gamma)=21.8 24$ based on B(E2) and T_{1/2} from DSAM in 1996Ja09; however, 1972Ro27 favor I $\gamma(836\gamma)=13 4$, based on their T_{1/2} from DSAM (not adopted here) and yield of 561 γ , assuming 837 γ has pure E2 multipolarity.
- ^b Based on $\gamma(\theta)$ and observation that γ yield varies with E α as expected from E2 Coulomb excitation theory (1972Ro27).
- ^c From $\gamma(\theta)$ (1972Ro27) if sign is indicated; $abs(\delta)$ from B(E2) and T_{1/2}, except where otherwise noted.

^d Weighted average of 0.14 3 from A₂=-0.041 7, A₄=-0.005 6 (1996Ja09) and -0.085 22 from 276 $\gamma(\theta)$ (1972Ro27). Sign taken from 1972Ro27. Alternative solution (δ =+4.8 5, 1972Ro27) is incompatible with measured B(E2) and T_{1/2} for 276 level.

^{*e*} Combining 290 γ -276 $\gamma(\theta)$ data of 1963Ar01 (from 1/2^{- 81}Se β ⁻ decay) with their 276 $\gamma(\theta)$ data, 1972Ro27 deduce J(566 level) \neq 1/2 and $\delta(290\gamma)$ =+0.07 9 or -4.5 +14-33 if J=3/2. However, neither of these δ values is consistent with $\delta(290\gamma)$ =+0.85 30 from $\gamma\gamma(\theta)$ in (p, γ) and 1.22 +32-23 from ⁸¹Se β ⁻ decay.

From ENSDF

^{*f*} Additional information 9.

Coulomb excitation 1996Ja09,1985Si08,1972Ro27

 $^{81}_{35}{\rm Br}_{46}$