⁸¹Ge β^- decay (7.6 s) 1981Ho24

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. Shamsuzzoha Basunia	NDS 199,271 (2025)	1-Sep-2024

Parent: ⁸¹Ge: E=679.14 4; $J^{\pi}=(1/2^+)$; $T_{1/2}=7.6$ s 6; $Q(\beta^-)=6242$ 3; $\%\beta^-$ decay=100

⁸¹Ge-Q(β^{-}): from 2021Wa16.

Others: 1972De43, 1981Al20, 1981ZeZY, 1990Ru05.

In 1980HoZN (Lab report of 1981Ho24), $E\gamma$, $I\gamma$ and $\gamma\gamma$ coin data are tabulated without differentiation between their ⁸¹Ge parentages.

Source: from mass-separated fission products.

1981Ho24, 1980HoZN: single γ and $\gamma\gamma$ coincidences measured with Ge(Li); x-ray detector for low energy γ search (E $\gamma \ge 15$ keV); Si(Li) detector for simultaneous measurement of ce and γ spectra (for α (K)exp determination).

From analysis of ⁸¹Ga decay and $\beta\gamma$ -coin measurements, it is evident that there are two β^- decaying isomers of ⁸¹Ge; but, in a multispectrum analysis of mass number 81, 1981Ho24 were unable to differentiate between their half-lives. Hence, 1981Ho24 conclude that there exist two isomers of ⁸¹Ge which possess similar T_{1/2} values.

1981Ho24 propose tentative decay schemes for the two isomers, consistent with $\gamma\gamma$ and $\beta\gamma$ coin data and supported by arguments based on the large spin differences of the decaying isomers and on analogies with ⁸³Se decay. However, J^{π} based on the resulting log *ft* value and observed γ deexcitation patterns are in conflict with L(t, α) for the 758 level unless separate levels with almost identical energy are assumed to be excited in β^{-} decay and in (t, α).

⁸¹As Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2}	Comments
0	3/2-	33.3 s 10	
93.08 5	$(3/2)^{-}$		
290.39 4	$(3/2)^{-}$		
335.97 4	$(5/2)^{-}$	<0.7 ns	$T_{1/2}$: from $\gamma \gamma(t)$ (1981Ho24).
737.72 4	(5/2)-		
758.41 7	$(5/2^-, 3/2^+)$		
864.20? [‡] 13	$(1/2^{-}, 3/2^{-}, 5/2^{-})$		
1041.99 8	$(7/2^{-})$		
1869.85? [‡] 17	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)		J ^{π} : in 2022De07, this level populated in β feeding from (9/2 ⁺) and proposed J ^{π} =5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻ . No J ^{π} listed here. (1/2,3/2) can be expected if β feeding from (1/2 ⁺).
2862.46? [‡] 17	(7/2,9/2 ⁻)		I β =4.8 19 log ft=5.9 2, less likely for a (7/2 ⁺ ,9/2 ⁺) state (Adopted Levels) from (1/2 ⁺).
2911.98? [‡] <i>13</i>	$(7/2^+, 9/2^+)$		I β =6.0 24 log ft=5.8 2, less likely for a (7/2 ⁺ ,9/2 ⁺) state (Adopted Levels) from (1/2 ⁺).
3136.27 <i>13</i>	$(3/2^+)$		
3195.31 <i>14</i>	$(3/2^+)$		
3368.28? [‡] 24	$(7/2^+, 9/2^+, 11/2^+)$		I β =1.8 8 log <i>ft</i> =6.0 2, less likely for a (7/2 ⁺ ,9/2 ⁺) state (Adopted Levels) from (1/2 ⁺).
3531.13 <i>21</i>	$(1/2^{-}, 3/2)$		
3562.72 15	$(1/2^+, 3/2^+)$		

[†] From a least-squares fit to $E\gamma$.

[±] Level assigned in the ⁸¹Ge β - decay (6.4 s) (2022De07). Population in the isomeric ⁸¹Ge β - decay (7.6 s) should be considered with caution. The evaluator marks the level as questionable.

From Adopted Levels.

⁸¹Ge β^- decay (7.6 s) 1981Ho24 (continued)

β^{-} radiations

From γ -gated β endpoint measurements, 1981A120 determine Q(β) values of 6220 *130* and 6930 *280* for g.s. and isomeric state β^- decay, respectively. These imply E(isomeric state, ⁸¹Ge)=710 *310*, consistent with its identification as the 679 level of ⁸¹Ge. Measured average E β =1580 *150* (1990Ru05).

 β^- av E β : Additional information 1.

E(decay)	E(level)	Ιβ ^{-†}	Log ft	Comments
(3358.4 <i>30</i>)	3562.72	6.1 <i>24</i>	5.40 <i>17</i>	av $E\beta = 1445.0 \ I4$
(3390.0 <i>30</i>)	3531.13	1.1 <i>5</i>	6.16 <i>20</i>	av $E\beta = 1460.1 \ I4$
$(3552.9^{\ddagger} 30)$	3368.28?	1.8 <i>8</i>	6.04 <i>20</i>	av $E\beta$ =1538.0 <i>14</i>
(3725.8 30)	3195.31	10 <i>4</i>	5.39 <i>18</i>	av $E\beta$ =1620.8 <i>14</i>
$(3784.9 \ 30)$	3136.27	10 <i>4</i>	5.42 18	av $E\beta = 1649.2$ 14
$(4009.2^{\ddagger} \ 30)$	2911.98?	6.0 24	5.75 18	av $E\beta = 1756.9$ 14
$(4058.7^{\ddagger} 30)$ $(5051.3^{\ddagger} 30)$ (1102.7 30)	2862.46? 1869.85?	4.8 <i>19</i> 3.4 <i>14</i>	5.87 <i>18</i> 6.44 <i>18</i>	av $E\beta = 1780.6 \ 14$ av $E\beta = 2259.1 \ 14$
(6162.730)	758.41	4.9 23	$6.68\ 21$	av $E\beta = 2796.6$ 15
$(6183.4^{\ddagger}30)$	737.72	8 4	$8.45^{1u}\ 22$	av $E\beta = 2800.5$ 14
(6630.830)	200.30	12 5	$6\ 43\ 18$	av $E\beta = 3003.2$ 15
(6828.1 <i>30</i>)	93.08	7 5	6.73 <i>31</i>	av $E\beta = 3118.8 \ 15$
(6921.1 <i>32</i>)	0	<54	>5.9	av $E\beta = 3163.9 \ 15$

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

$\gamma(^{81}As)$

I γ normalization: approximate value from $\Sigma I(\gamma+ce)$ to g.s.=73% 27, deduced assuming log *ft*>5.9 to g.s., which implies I β (g.s.)<54%. Measured average E γ =2000 222 (1990Ru05).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. [‡]	δ	α^{a}	Comments
93.10 10	34 4	93.08	(3/2) ⁻	0	3/2-	M1+E2	0.24 6	0.160 26	α (K)exp=0.141 21 α (K)=0.140 22; α (L)=0.0166 31; α (M)=0.0025 5
197.30 5	16.4 <i>10</i>	290.39	(3/2)-	93.08	(3/2)-	(M1)		0.01490 <i>21</i>	$\alpha(N)=0.000182 \ 31$ δ : from $\alpha(K)$ exp. $\alpha(K)$ exp=0.010 5 $\alpha(K)=0.01326 \ 19; \ \alpha(L)=0.001411 \ 20; \ \alpha(M)=0.0002153 \ 30$ $\alpha(N)=1.633 \times 10^{-5} \ 23$
242.84 9	0.7 4	335.97	$(5/2)^{-}$	93.08	(3/2)-				
290.35 5 335.98 5	8.6 7 17 <i>3</i>	290.39 335.97	(3/2) ⁻ (5/2) ⁻	0 0	3/2 ⁻ 3/2 ⁻	M1,E2		0.0067 27	α (K)exp=0.0064 32 α (K)=0.0059 24; α (L)=6.4×10 ⁻⁴ 27; α (M)=1.0×10 ⁻⁴ 4 α (N)=7.2×10 ⁻⁶ 29 δ : both α (K)(M1) and α (K)(E2) lie within limits of experimental uncertainty.
401.75 5	5.7 5	737.72	(5/2) ⁻	335.97	(5/2)-				
456.3 2	2.4 4	3368.28?	$(7/2^+, 9/2^+, 11/2^+)$	2911.98?	$(7/2^+, 9/2^+)$				
^x 463.1 3	1.9 4	750 41	$(5/2-2/2^{+})$	200.20	$(2/2)^{-}$				
^x 609.1 3	5.4 <i>10</i> 1.9 <i>4</i>	/38.41	(3/2, 3/2)	290.39	(3/2)				
609.1 3 665.9 [#] 3 706.07 10 737.74 5 751.51 10 758.5 6 771.26 15 1005.7 ^d 3 *1038.5 4 *1056.5 2 *1095.5 3 *1225.8 2 *1238.9 3 *1256.1 2	$\begin{array}{c} 1.9 \ 4 \\ 3 \\ 1.0 \ 7 \\ 14 \ 1 \\ 1.0 \ 7 \\ 7.4 \ 7 \\ 6.1 \ 5 \\ 1.6 \ 4 \\ 1.7 \ 5 \\ 4.2 \ 4 \\ 3.0 \ 3 \\ 4.1 \ 5 \\ 2.4 \ 4 \\ 1.1 \ 3 \end{array}$	758.41 1041.99 737.72 1041.99 758.41 864.20? 1869.85?	$(5/2^{-},3/2^{+})$ $(7/2^{-})$ $(5/2)^{-}$ $(7/2^{-})$ $(5/2^{-},3/2^{+})$ $(1/2^{-},3/2^{-},5/2^{-})$ $(5/2^{-},7/2^{-},9/2^{-})$	93.08 335.97 0 290.39 0 93.08 864.20?	(3/2) ⁻ (5/2) ⁻ 3/2 ⁻ (3/2) ⁻ (3/2) ⁻ (1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)				

ω

				⁸¹ Ge	β^- decay (7.6 s)	1981Ho24 (continued)	
$\gamma(^{81}\text{As})$ (continued)							
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	J_i^{π}	E_f	J_f^π	Comments	
^x 1297.4 3 ^x 1435.7 2 ^x 1686.5 3	2.8 <i>4</i> 4.5 <i>5</i> 1.1 <i>2</i>						
1869.8 ^{c@d} 2	3 ^c	1869.85?	(5/2 ⁻ ,7/2 ⁻ ,9/2 ⁻)	0	3/2-	E_{γ} : evaluator marks the placement as questionable and not adopted. See comments with the level. The γ is not listed to populate a comparable level in 2022De07.	
1869.8 ^{c@} 2	2 ^C	2911.98?	$(7/2^+, 9/2^+)$	1041.99	$(7/2^{-})$		
2103.9 3	2.7 4	2862.46?	$(7/2,9/2^{-})$	758.41	$(5/2^-, 3/2^+)$		
2174.32 15	8.6 6	2911.98?	$(7/2^+, 9/2^+)$	737.72	$(5/2)^{-}$		
2331.3 2	4.5 5	3195.31	$(3/2^+)$	864.20?	$(1/2^-, 3/2^-, 5/2^-)$		
2377.4 4	3.4 10	3136.27	$(3/2^+)$	758.41	$(5/2^{-},3/2^{+})$		
2436.6	≈ 1	3195.31	$(3/2^+)$	758.41	$(5/2^-, 3/2^+)$	E_{γ} : from fig. 11 of 1981Ho24.	
2526.5 2	3.9 4	2862.46?	$(7/2, 9/2^{-})$	335.97	$(5/2)^{-}$		
^x 2754.8 3	4.5 5						
2800.2 2	5.7 6	3136.27	$(3/2^+)$	335.97	$(5/2)^{-}$		
2845.8 2	2.8 4	3136.27	$(3/2^+)$	290.39	$(3/2)^{-}$		
2859.1	≈1	3195.31	$(3/2^+)$	335.97	$(5/2)^{-}$	E_{γ} : from fig. 11 of 1981Ho24.	
2904.7 3	1.8 3	3195.31	$(3/2^+)$	290.39	$(3/2)^{-}$		
3136.6 3	1.7 3	3136.27	$(3/2^+)$	0	3/2-		
3195.1 ^{c&} 2	5.3 ^c	3195.31	$(3/2^+)$	0	3/2-		
3195.1 ^{c&} 2	1.5 ^C	3531.13	$(1/2^{-}, 3/2)$	335.97	$(5/2)^{-}$		
3469.5 2	2.9 3	3562.72	$(1/2^+, 3/2^+)$	93.08	$(3/2)^{-}$		
3562.7 2	5.4 4	3562.72	$(1/2^+, 3/2^+)$	0	3/2-		

[†] All data for unplaced γ rays and all uncertainties are from 1980HoZN; other data are from 1981Ho24, except as noted.

[#] I γ from drawing in 1981Ho24; E γ from table 11 of 1980HoZN. I γ =11.0 20 for multiplet (1980HoZN, both isomers combined).

[@] I γ from drawing in 1981Ho24; E γ from table 11 in 1980HoZN. I γ =5.0 5 for doublet (1980HoZN).

& I γ from drawing in 1981Ho24; E γ from table 11 in 1980HoZN. I γ =6.8 6 for doublet (1980HoZN).

^{*a*} Additional information 2.

^b For absolute intensity per 100 decays, multiply by 0.73 28.
 ^c Multiply placed with intensity suitably divided.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{81}_{33}\mathrm{As}_{48}$ -4

From ENSDF

[‡] From α (K)exp (1981Ho24).

⁸¹Ge β^- decay (7.6 s) 1981Ho24

